

# **BEDIENUNGSANLEITUNG**

STEUERGERÄT FÜR

DD51-E-RF GN 9154 DD52R-E-RF GN 9153 MPI-R10-RF GN 7110

**UC-RF** (GN 9150)\*

\*Produktcode gültig für Deutschland



# Diese Bedienungsanleitung gilt für folgende Produkte:

| CE.99225-W2 | UC-RF-W2 ETHERNET/IP |
|-------------|----------------------|
| CE.99231-W2 | UC-RF-W2 PROFINET IO |
| CE.99229-W2 | UC-RF-W2 MODBUS TCF  |
| CE.99226-W2 | UC-RF-W2 ETHERCAT IC |

# Inhalt

| 1. Sicherheitshinweise                    | 4  |  |
|-------------------------------------------|----|--|
| 1.1 Firmware-Release-Informationen        | 4  |  |
| 1.2 Sicherheitshinweise                   | 4  |  |
| 1.2.1 Einrichtung/Inbetriebnahme          | 5  |  |
| 1.2.2 Wartung/Reparatur                   | 5  |  |
| 2. Beschreibung                           | 5  |  |
| 2.1 Kompatible Geräte                     | 5  |  |
| 2.2 Verfügbare Schnittstellen             | 5  |  |
| 2.3 RF-Kommunikation                      | 6  |  |
| 3. Verbindungen und Montage               | 6  |  |
| 3.1 Stromversorgung                       | 6  |  |
| 3.2 Verbindung zur SPS                    | 6  |  |
| 3.3 Antenne                               |    |  |
| 4. Beschreibung des neuen Elesa-Netzwerks |    |  |
| 5. Ethernet-Schnittstelle                 |    |  |
| 6. UC-RF-Status-LED 8                     |    |  |
| 7. Verfügbarer BUS                        | 8  |  |
| 7.1 ETHERNET/IP (CE.99225-W2)             | 8  |  |
| 7.1.1 Status-LEDs                         | 9  |  |
| 7.2 PROFINET (CE.99231-W2)                | 9  |  |
| 7.2.1 Status-LEDs                         | 10 |  |
| 7.3 MODBUS/TCP (CE.99229-W2)              | 11 |  |
| 7.3.1 Status-LEDs                         | 11 |  |
| 7.4 ETHERCAT (CE.99226-W2)                | 12 |  |
| 7.4.1 Status-LEDs und Anschlüsse          | 12 |  |

# **UC-RF**

| 8. Modi                                                        | 14 |
|----------------------------------------------------------------|----|
| 8.1 Modus 20 – UC-Konfiguration                                | 15 |
| 8.1.1 Befehls-ID 0x01 – Reset-Befehl                           | 15 |
| 8.1.2 Befehls-ID 0x02 – Zurücksetzen der Standardkonfiguration | 16 |
| 8.1.3 Befehls-ID 0x03 – Meldungszähler zurücksetzen            | 16 |
| 8.1.4 Befehls-ID 0x0A – Verknüpfungstabelle laden              | 17 |
| 8.1.5 Befehls-ID 0x15 – RF-Kanal einstellen                    | 18 |
| 8.1.6 Befehls-ID 0x1F – Timeout für "Gerät trennen" einstellen | 18 |
| 8.2 MODUS 28 – VERKNÜPFUNG                                     | 19 |
| 8.3 MODUS 29 – BEREITS VERBUNDENE GERÄTE                       | 21 |
| 8.4 MODUS 22 – TARGET UND POSITION                             | 22 |
| 8.5 MODUS 24 – GRUNDEINSTELLUNG                                | 24 |
| 8.5.1 Standardwerte und Bedeutung der Parameter                | 27 |
| 8.6 MODUS 25 – OFFSET-KONFIGURATION                            | 33 |
| 8.6.1 Standardwerte und Bedeutung der Parameter                | 35 |
| 8.7 MODUS 26 UND 27 – TARGET-KONFIGURATION                     | 35 |
| 8.7.1 Standardwerte und Bedeutung der Parameter                | 36 |
| 8.8 MODUS 2C – DIREKTER SPEICHERZUGRIFF                        | 37 |
| 8.9 MODUS 2A – ÜBERTRAGUNGSQUALITÄT                            | 39 |
| 9. STATUS UND STEUERUNG VON REMOTE-GERÄTEN                     | 40 |
| 9.1 Gerätestatus                                               | 40 |
| 9.2 Gerätebefehl                                               | 41 |
| 10. STATUS UND STEUERUNG DER ZENTRALEINHEIT                    | 42 |
| 10.1 UC-RF-STATUS                                              | 42 |
| 10.2 UC-RF-BEFEHL                                              | 42 |
| 10.2.1 Ausführung eines Befehls                                | 43 |
| 10.3 MODUSÄNDERUNG                                             | 43 |
| 10.4 ZEITABLAUF DER STATUS- UND BEFEHLSFLAGS                   | 44 |
| 10.5 VERFAHREN ZUM SENDEN VON BEFEHLEN                         | 46 |
| ANHANG A – BUS-SCHNITTSTELLENANSCHLUSS                         | 47 |
| ANHANG B – TECHNISCHE DATEN                                    | 47 |



#### 1. Sicherheitshinweise

#### 1 1 Firmware-Release-Informationen

#### 1.2 Sicherheitshinweise

Dieses Gerät wurde in Übereinstimmung mit der geltenden Gesetzgebung entwickelt und hergestellt. Damit das Produkt diesen Zustand beibehält, muss es sachgerecht montiert und verwendet werden, nach den genauen Vorgaben in dieser Anleitung und unter Beachtung der folgenden spezifischen Sicherheitsmaßnahmen. Diese Bedienungsanleitung ist eine unverzichtbare Ergänzung der vorhandenen Dokumentation (Kataloge, Datenblätter und Montageanweisungen), Stellen Sie sicher, dass der Anwender die Betriebsanleitung und insbesondere dieses Kapitel "Sicherheitshinweise" gelesen und verstanden hat. Ergänzend zur Betriebsanleitung sind alle gesetzlichen Vorschriften zur Unfallverhütung und zum Umweltschutz zu beachten. Dieses Gerät entspricht Teil 15 der FCC-Bestimmungen. Der Betrieb unterliegt den folgenden zwei Bedingungen: (1) Dieses Gerät darf keine schädlichen Störungen verursachen und (2) dieses Gerät muss alle empfangenen Störungen tolerieren, einschließlich Störungen, die zu einem unerwünschten Betrieb führen können. Dieses Produkt wurde gemäß Teil 15 der FCC-Bestimmungen geprüft und erfüllt die Grenzwerte für ein digitales Gerät der Klasse A. Diese Grenzwerte dienen zum Schutz vor schädlichen Störungen, wenn das Gerät in einer kommerziellen Umgebung verwendet wird. Dieses Gerät erzeugt, nutzt und emittiert Hochfreguenzstrahlung und kann sich bei einer nicht den Anweisungen entsprechenden Installation und Verwendung negativ auf den Funkverkehr auswirken. Die Verwendung dieses Geräts in einem Wohnbereich kann sehr wahrscheinlich zu funktechnischen Störungen führen. In einem solchen Fall muss der Nutzer die Störungen auf seine eigenen Kosten beheben.

**WICHTIGER HINWEIS:** Um die FCC-Bestimmungen zur RF-Belastung einzuhalten, darf die für diesen Sender verwendete Antenne nicht zusammen mit einer anderen Antenne oder einem anderen Sender aufgestellt oder betrieben werden.



Der Einsatz ohne Berücksichtigung der Beschreibungen/spezifischen Parameter für die Steuerung von Systemen/ Maschinen/Prozessen kann zu einer Fehlfunktion des Produkts führen, mit diesen Folgen:

- Gesundheitsgefährdung,
- Umweltrisiken
- Schäden am Produkt und Beeinträchtigung von dessen ordnungsgemäßer Funktion.

Das Gerät darf nicht verwendet werden:

- in Bereichen, in denen Explosionsgefahr besteht;
- in medizinischen/lebenserhaltenden Bereichen und Ausrüstungen.

Öffnen Sie das Gerät nicht und unterlassen Sie iede Art von Manipulation!

Manipulationen am Gerät können die Zuverlässigkeit des Geräts beeinträchtigen und gefährlich sein! Versuchen Sie nicht, das Gerät zu reparieren. Senden Sie defekte Geräte immer an den Hersteller zurück! Jede Verletzung der Integrität des Produkts führt dazu, dass Sie Ihren Garantieanspruch verlieren. Änderungen oder Modifikationen, die nicht ausdrücklich vom Hersteller genehmigt wurden, können die Betriebserlaubnis des Nutzers unwirksam werden lassen.



#### 1.2.1 Einrichtung/Inbetriebnahme

Im Falle einer Fehlfunktion (auch bei einer Veränderung der Betriebsbedingungen) muss das Gerät sofort ausgeschaltet werden. Die Montage und Inbetriebnahme darf nur von ausreichend geschultem und autorisiertem Personal durchgeführt werden. Nach korrekter Einrichtung und Inbetriebnahme ist das Gerät betriebsbereit

#### 1.2.2 Wartung/Reparatur

Schalten Sie vor allen Arbeiten die Stromversorgung des Geräts aus. Wartungsarbeiten dürfen nur von geschulten und autorisierten Personen durchgeführt werden.

Das Anzeigengehäuse darf weder geöffnet noch modifiziert werden. Manipulationen an diesem Produkt gefährden die Korrektheit und Genauigkeit seiner Funktionen. Versuchen Sie im Falle einer Störung nicht, das Gerät zu reparieren.

Versuchen Sie im Falle von Störungen nicht, das Produkt selbst zu reparieren, sondern wenden Sie sich an die Verkaufsniederlassung von Elesa.

### 2. Beschreibung

Das Steuergerät ermöglicht die Kommunikation zwischen den elektronischen RF-Stellungsanzeigern und der magnetischen Messung zu einer SPS.

Wenn sie an eine UC-RF angeschlossen ist, kann die SPS die aktuelle Position jedes Anzeigers lesen und an Remote-Geräte eine Target-Position senden. Dadurch erfährt die SPS und in der Folge der Bediener die genaue Situation und Position der Steuerwelle und/oder der Komponenten der Maschine. Darüber hinaus können Sie die Konfiguration von Remote-Geräten lesen und festlegen sowie den Status und die Güte der Verbindung überprüfen.

Das Steuergerät (UC-RF) ist ein standardmäßiges DIN-Schienenmodul. Das Gerät verfügt über eine Buchse für den Anschluss an eine Stromversorgung, einen gängigen industriellen Bus-Schnittstellenanschluss für die Kommunikation mit der SPS und einen Antennenausgang für die RF-Kommunikation mit dem elektronischen RF-Stellungsanzeiger und Elesa-Messgeräten (separat zu bestellen).

### 2.1. Kompatible Geräte

Das UC-RF kommuniziert mit den folgenden Gerätefamilien (im Folgenden als REMOTE-GERÄTE bezeichnet):

DD51-E-RF DD52R-E-RF MPI-R10-RF

### 2.2 Verfügbare Schnittstellen

Das UC-RF ist für die folgenden Busse verfügbar:

Ethernet/IP Profinet Modbus/TCP EtherCAT



#### 2.3 RF-Kommunikation

Die RF-Übertragung nutzt das ISM-SRD-Band im Bereich von 2,400–2,416 GHz. Die Kommunikation zwischen den Remote-Geräten und dem UC-RF erfolgt durch ein proprietäres Elesa-Protokoll.

### 3. Verbindungen und Montage

Das UC-RF kann dank des speziellen Hakens auf der Rückseite auf einer herkömmlichen Hutschiene installiert werden.

#### 3.1 Stromversorgung

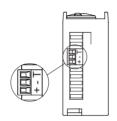



Abb. 3-1 - Stromversorgungsanschluss des UC-RF

Der Stecker für den Stromversorgungsanschluss ist im Set enthalten.

ACHTUNG: Der Stromversorgungseingang muss durch eine träge 100-mA-Sicherung geschützt sein.

### 3.2 Verbindung zur SPS

Das UC-RF muss an einem der beiden Anschlüsse an der Vorderseite des Geräts über ein Ethernet-RJ45-Kabel mit der SPS verbunden werden (siehe Zeichnung unten). Beide Anschlüsse sind gleichwertig. Falls zwei SPS (oder 1 SPS + 1 PC) angeschlossen werden, stellen Sie sicher, dass Konflikte vermieden werden. Weitere Spezifikationen finden Sie in den spezifischen Anforderungen an den Kommunikationsbus.

#### Abb. 3-2 – UC-RF Bus-Schnittstellenanschlüsse



#### 3.3 Antenne

6

DE

Die Antenne wird mit dem Steuergerät mitgeliefert. Die Antenne ist für die Montage in Anwendungen geeignet, bei denen das Gegengewicht nicht von der Antenne abgeschirmt wird. Die Antenne darf

nicht in einem Metallschrank montiert werden; es müssen nichtleitende bzw. offene Metallgehäuse oder Befestigungen verwendet werden.

Wenn sich das Gegengewicht innerhalb eines geschirmten Gehäuses befindet, wird die Leistung der Antenne beeinträchtigt.

Die Antenne muss in der Mitte des Bereichs platziert werden, in dem die Remote-Geräte montiert sind, und zwar idealerweise dort, wo es möglich ist, eine metallische Abschirmung dazwischen zu vermeiden. Falls erforderlich, können auch Verlängerungskabel verwendet werden. Es muss ein Koaxialkabel RG 174/U (mit SMA-Stecker/Buchse) verwendet werden; verfügbare Anschlusskabel siehe Elesa-Katalog. Die beste Lösung ist jedoch, die Antenne direkt mit dem UC-RF verbunden zu lassen und sie an einem Ort zu installieren, der für Sie praktischer ist, und dabei die oben genannten Hinweise zu befolgen.

#### **ACHTUNG:**

Die Reichweite der Funkverbindung beträgt bis zu 30 m bei Sichtverbindung. In industriellen Umgebungen hängt die tatsächliche Reichweite jedoch von vielen Faktoren ab – Vorhandensein von Wänden, Maschinenteilen. Metallhindernissen usw.

Eine sorgfältige Wahl der Antennenposition vermeidet Kommunikationsprobleme.

### 4. Beschreibung des neuen Elesa-Netzwerks

Im drahtlosen Netzwerk von Elesa wird jedes Gerät durch eine eindeutige Kennung identifiziert, die werkseitig von Elesa festgelegt wird.

Das Netzwerk kann in Subnetzwerke unterteilt werden. Ein Subnetzwerk besteht aus einem UC-RF, das bis zu 36 Remote-Geräte umfassen kann.

Nach der Abgabe aus dem Werk befindet sich jedes Remote-Gerät in einem NICHT ZUGEORDNETEN Zustand und kann daher dem ersten UC-RF zugeordnet werden, das dies anfordert. Sobald die Anforderung zur ZUORDNUNG (Verknüpfung) von einem UC-RF empfangen wurde, speichert das Remote-Gerät die ID des UC-RF als seinen einzigen Kommunikationspartner im Netzwerk.

Das Remote-Gerät kann über den entsprechenden Menüpunkt auf jedem Gerät in den Zustand NICHT ZUGEORDNET (nicht verknüpft) zurückversetzt werden.

Sobald das Remote-Gerät mit einem UC-RF verbunden ist, überträgt es seine Daten mit einer bestimmten Frequenz an das verbundene UC-RF. Während dieser Kommunikation sendet das UC-RF gegebenenfalls Target- oder Konfigurationsdaten an das Remote-Gerät. Die Frequenz und der Übertragungsmodus können auf dem Remote-Gerät mithilfe der entsprechenden Funktion im Programmiermenü eingestellt werden.

### 5. Ethernet-Schnittstelle

Die MODBUS/TCP-, Profinet, Ethernet/IP- und EtherCat-Protokolle identifizieren die Schnittstellen mit einer IP-Adresse. Die UC-RF sind werksseitig mit den folgenden Parametern eingestellt:

IP: 192-168.1.10 statisch Subnetzmaske: 255.255.255.0

Gateway: 198.168.1.1

Sie können die Netzwerkparameter mit dem Dienstprogramm IPConfig ändern, das Sie hier herunterladen können:

https://www.elesa.com/en/elesab2bstoreuk/control-unit-for-rf-indicators-uc-rf#listtype=search&term=uc-rf Wenn es aktiviert ist, unterstützen die Geräte auch DHCP.



#### 6. UC-RF-Status-LEDs

Wenn das Gerät eingeschaltet wird, leuchtet die rote LED. Kurz darauf schaltet sie sich aus und die grüne beginnt zu blinken, bis das Hochfahren abgeschlossen ist.

Wenn die rote LED und die grüne LED abwechselnd blinken, überprüfen Sie bitte die Verbindung zur SPS und/oder die Konfiguration der IP-Adresse.

Wenn die rote LED und die grüne LED weiterhin leuchten, ist das UC-RF aktiv und wartet darauf, dass der Betriebsmodus eingestellt wird (siehe Kap. 0).

Während des Betriebs blinkt die GRÜNE LED, wenn erfolgreich mit einem Remote-Gerät kommuniziert wird. Die ROTE LED blinkt jedoch, wenn die Kommunikation gestört ist.

Manchmal blinkt die ROTE LED aus anderen Gründen als einer fehlgeschlagenen Kommunikation.

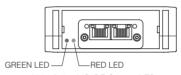



Abb. 6-1 - UC-RF-Status-LFDs

### 7. Verfügbarer BUS

#### 7.1. ETHERNET/IP (CE.99225-W2)

Das Modul verwendet Nachrichten der Klasse 1 (Explicit Messaging).

Für die Konfiguration steht die EDS-Datei unter folgendem Link zur Verfügung:

https://www.elesa.com/en/elesab2bstoreuk/control-unit-for-rf-indicators-uc-rf#listtype=search&term=uc-rf

Falls der Link nicht erreichbar ist, wenden Sie sich bitte an den Elesa-Kundendienst.

Das EDS ermöglicht der SPS, das UC-RF am Ethernet/IP-Bus zu erkennen. Danach müssen Sie alle E/A-Instanzen wie unten beschrieben konfigurieren.

#### Eingangsbaugruppe UC-RF → SPS

Instanz 0x64h (100 Dezimal), 224 Bytes, organisiert wie in Kapitel 0 beschrieben:

#### Ausgangsbaugruppe SPS →UC-RF

Instanz 0x96 (150 Dezimal), 224 Bytes, organisiert wie in Kapitel 0 beschrieben:





#### 7.1.1 Status-LEDs

| Netzwerk-Status-LED |                                                                                           |  |
|---------------------|-------------------------------------------------------------------------------------------|--|
| LED-Zustand         | Beschreibung                                                                              |  |
| Aus                 | Keine Stromversorgung oder keine IP-Adresse                                               |  |
| Grün                | Online, eine oder mehrere Verbindungen hergestellt (CIP-Klasse 1 oder 3)                  |  |
| Grün, blinkend      | Online, keine Verbindung hergestellt                                                      |  |
| Rot                 | Doppelte IP-Adresse oder SCHWERWIEGENDER Fehler                                           |  |
| Rot, blinkend       | Eine oder mehrere Verbindungen wegen Zeitüberschreitung abgebrochen (CIP-Klasse 1 oder 3) |  |

| Modul-Status-LI | ED                                                                     |
|-----------------|------------------------------------------------------------------------|
| LED-Zustand     | Beschreibung                                                           |
| Aus             | Ausgeschaltet                                                          |
| Grün            | Gesteuert durch Scanner im Betriebszustand                             |
| Grün, blinkend  | Nicht konfiguriert oder Scanner im Ruhezustand                         |
| Rot             | Schwerwiegender Fehler (Zustand AUSNAHME, SCHWERWIEGENDER Fehler usw.) |
| Rot, blinkend   | Behebbare(r) Fehler                                                    |

| VERBINDUNG/Aktivitäts-LED 3/4 |                                     |  |
|-------------------------------|-------------------------------------|--|
| LED-Zustand                   | Beschreibung                        |  |
| Aus                           | Keine Verbindung, keine Aktivität   |  |
| Grün                          | Verbindung (100 Mbit/s) hergestellt |  |
| Grün, flackernd               | Aktivität (100 Mbit/s)              |  |
| Gelb                          | Verbindung (10 Mbit/s) hergestellt  |  |
| Gelb, flackernd               | Aktivität (10 Mbit/s)               |  |

#### 7.2 ProfiNET (CE.99231-W2)

Die GSD-Datei finden Sie unter folgendem Link:

https://www.anybus.com/support/file-doc-downloads/compactcom-30-series-specific/?ordercode=AB6221 Falls der Link nicht erreichbar ist, wenden Sie sich bitte an den Elesa-Kundendienst.

Die GSD-Datei ermöglicht der SPS, das UC-RF am Profinet-Bus zu erkennen. Anschließend müssen 56 Steckplätze mit je 8 Bits wie folgt konfiguriert werden:

- Steckplatz 0 bis Steckplatz 27 Ausgang (SPS zu UC)
- Steckplatz 28 bis Steckplatz 55 Eingang (UC zu SPS)

Die Länge jedes Datenblocks beträgt 224 Bytes.

Die Ordnung und der Wert einzelner Bytes werden in Kapitel 0 erläutert.



#### 7.2.1 Status-LEDs

| Netzwerk-Status-LED            |                             |                                                                                                                                       |
|--------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| LED-Zustand                    | Beschreibung                | Kommentare                                                                                                                            |
| Aus                            | Offline                     | - Ausgeschaltet<br>- keine Verbindung mit IO-Controller                                                                               |
| Grün                           | Online (RUN)                | - Verbindung mit IO-Controller aufgebaut<br>- IO-Controller im RUN-Zustand                                                            |
| Grün, 1x kurzes<br>Aufleuchten | Online (STOP)               | Verbindung mit IO-Controller aufgebaut     IO-Controller im STOP-Zustand oder IO-Daten schlecht     IRT-Synchronisation nicht beendet |
| Grün blinkend                  | Blinken                     | Wird von Entwicklungstools verwendet, um den Knoten im Netzwerk zu identifizieren                                                     |
| Rot                            | Schwerwiegendes<br>Ereignis | Schwerwiegender interner Fehler (diese Anzeige wird mit einer roten Modul-Status-LED kombiniert)                                      |
| Rot, 1x kurzes<br>Aufleuchten  | Stationsnamen-Fehler        | Stationsname nicht festgelegt                                                                                                         |
| Rot, 2x kurzes<br>Aufleuchten  | IP-Adressen-Fehler          | IP-Adresse nicht festgelegt                                                                                                           |
| Rot, 3x kurzes<br>Aufleuchten  | Konfigurationsfehler        | Erwartete Identifikation unterscheidet sich von der tatsächli-<br>chen Identifikation                                                 |

| Modul-Status-LED                 |                             |                                                                                                                        |
|----------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|
| LED-Zustand                      | Beschreibung                | Kommentare                                                                                                             |
| Aus                              | Nicht initialisiert         | Ausgeschaltet ODER Modul im Zustand SETUP oder NW_INIT.                                                                |
| Grün                             | Normaler Betrieb            | Das Modul hat den Zustand NW_INIT verlassen.                                                                           |
| Grün, 1x kurzes Auf-<br>leuchten | Diagnoseereignis(se)        | Diagnoseereignis(se) vorhanden                                                                                         |
|                                  | Ausnahmefehler              | Gerät im Zustand AUSNAHME                                                                                              |
| Rot                              | Schwerwiegendes<br>Ereignis | Schwerwiegender interner Fehler (diese Anzeige wird mit einer roten Netzwerk-Status-LED kombiniert)                    |
| Abwechselnd Rot/Grün             | Firmware-Update             | Schalten Sie das Modul NICHT aus. Das Ausschalten des<br>Moduls in dieser Phase kann zu dauerhaften Schäden<br>führen. |

| VERBINDUNG/Aktivitäts-LED |                  |                                                              |
|---------------------------|------------------|--------------------------------------------------------------|
| LED-Zustand               | Beschreibung     | Kommentare                                                   |
| Aus                       | Keine Verbindung | Keine Verbindung, keine Kommunikation vorhanden              |
| Grün                      | Verbindung       | Ethernet-Verbindung aufgebaut, keine Kommunikation vorhanden |
| Grün, flackernd           | Aktivität        | Ethernet-Verbindung aufgebaut, Kommunikation vorhanden       |



### 7.3 MODBUS/TCP (CE.99229-W2)

Der Speicher des UC-RF ist in zwei Arrays mit jeweils 112 Wörtern (2 Byte) organisiert.

Der erste R/W (lesen/schreiben) mit der Adresse 0x00h enthält die Daten, die die SPS an die Remote-Geräte sendet (Eingangsdaten), und die Befehle, die an das UC-RF gegeben werden.

Das zweite, nur R (lesen), mit der Adresse 0x100h, enthält die Daten, die das UC-RF von Remote-Geräten liest (Ausgabedaten), sowie den Status des UC-RF.

LESEN/SCHREIBEN - von der SPS aktualisiert

0x00 – 0x6B Eingangsdaten
 0x6C – 0x6F UC-RF-Befehle

Nur LESEN – aktualisiert durch das UC-RF

• 0x100 - 0x16B Ausgangsdaten

• 0x16C – 0x16F UC-RF-Status

#### 7.3.1 Status-LEDs

| Netzwerk-Status-LED |                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------|
| LED-Zustand         | Beschreibung                                                                              |
| Aus                 | Keine Stromversorgung oder keine IP-Adresse                                               |
| Grün                | Online, eine oder mehrere Verbindungen hergestellt (CIP-Klasse 1 oder 3)                  |
| Grün, blinkend      | Online, keine Verbindung hergestellt                                                      |
| Rot                 | Doppelte IP-Adresse oder SCHWERWIEGENDER Fehler                                           |
| Rot, blinkend       | Eine oder mehrere Verbindungen wegen Zeitüberschreitung abgebrochen (CIP-Klasse 1 oder 3) |

| Modul-Status-LED |                                                                        |
|------------------|------------------------------------------------------------------------|
| LED-Zustand      | Beschreibung                                                           |
| Aus              | Ausgeschaltet                                                          |
| Grün             | Gesteuert durch Scanner im Betriebszustand                             |
| Grün, blinkend   | Nicht konfiguriert oder Scanner im Ruhezustand                         |
| Rot              | Schwerwiegender Fehler (Zustand AUSNAHME, SCHWERWIEGENDER Fehler usw.) |
| Rot, blinkend    | Behebbare(r) Fehler                                                    |

| Umgebungsbedingungen |                                     |  |
|----------------------|-------------------------------------|--|
| LED-Zustand          | Beschreibung                        |  |
| Aus                  | Keine Verbindung, keine Aktivität   |  |
| Grün                 | Verbindung (100 Mbit/s) hergestellt |  |
| Grün, flackernd      | Aktivität (100 Mbit/s)              |  |
| Gelb                 | Verbindung (10 Mbit/s) hergestellt  |  |
| Gelb, flackernd      | Aktivität (10 Mbit/s)               |  |



### 7.4 ETHERCAT (CE.99226-W2)

Die ESI-Datei kann konfiguriert werden und ist auf Anforderung beim Elesa-Kundendienst erhältlich. Die ESI-Datei ermöglicht der SPS, das UC-RF auf dem EtherCAT-Bus zu erkennen. Es sind zwei 224-Byte-Arrays definiert:

UC-RF →SPS 224 Nur-Lese-Bytes (TX PDO), organisiert wie in Kap. 8 beschrieben:

SPS →UC-RF 224 Nur-Lese-Bytes (RX PDO), organisiert wie in Kap. 8 beschrieben:

#### 7.4.1 Status-LEDs und Anschlüsse

#### Vorderansicht (RJ45-Anschlüsse)

| # | Element                        |    |
|---|--------------------------------|----|
| 1 | BETRIEBS-LED (RUN)             | 6  |
| 2 | FEHLER-LED                     |    |
| 3 | EtherCAT (Eingang)             |    |
| 4 | EtherCAT (Ausgang)             |    |
| 5 | Verbindung/Aktivität (Eingang) |    |
| 6 | Verbindung/Aktivität (Ausgang) | 8) |

Die Blinkfolgen der Betriebs-LED (RUN) und der Fehler-LED (ERR) sind in ETG1300\_S\_R\_V1i1i0\_IndicatorLabelingSpecification.pdf (ETG) definiert.

#### VORSICHT

Die Anschlüsse der Module sind nicht gleichwertig, aber die Verbindung muss die Richtung der Ether-CAT-Bus-EIN-AUS-Verbindung berücksichtigen.

#### **BETRIEBS-LED (RUN)**

Diese LED dient als Anzeige für den Betriebszustand des EtherCAT-Geräts usw.

| LED-Zustand Anzeige            |                               | Beschreibung                                                                                                                                                                                                              |  |  |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Aus INIT                       |                               | EtherCAT-Gerät im Zustand "INIT" (oder ohne Stromversorgung)                                                                                                                                                              |  |  |
| Grün                           | BETRIEB                       | EtherCAT-Gerät im BETRIEBS-Zustand                                                                                                                                                                                        |  |  |
| Grün blinkend                  | VOR-BETRIEB                   | EtherCAT-Gerät im VOR-BETRIEBS-Zustand                                                                                                                                                                                    |  |  |
| Grün, 1x kurzes<br>Aufleuchten | SICHERER BETRIEB              | EtherCAT-Gerät im Zustand SICHERER BETRIEB                                                                                                                                                                                |  |  |
| Flackernd BOOT                 |                               | EtherCAT-Gerät im BOOT-Zustand                                                                                                                                                                                            |  |  |
| Rot                            | (Schwerwiegendes<br>Ereignis) | Wenn die LEDs RUN und ERR rot leuchten, ist dies ein Anzeichen für ein schwerwiegendes Ereignis, das die Busschnittstelle in einen physisch passiven Zustand versetzt. Wenden Sie sich an den technischen Support von HMS |  |  |



#### **FEHLER-LED**

Diese LED dient als Anzeige für EtherCAT-Kommunikationsfehler usw.

| LED-Zustand                          | Anzeige                               | Beschreibung                                                                                                                                                                                                                                                 |  |
|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Aus Kein Fehler                      |                                       | Kein Fehler (oder keine Stromversorgung)                                                                                                                                                                                                                     |  |
| Rot blinkend Ungültige Konfiguration |                                       | Der vom Master empfangene Zustandswechsel ist aufgrund ungültiger Register- oder Objekteinstellungen nicht möglich.                                                                                                                                          |  |
| Rot, 1x kurzes<br>Aufleuchten        | Unaufgeforderte Zustand-<br>sänderung | Die Anwendung des Slave-Geräts hat den EtherCAT-Zustand eigenständig geändert.                                                                                                                                                                               |  |
| Rot, 2x kurzes<br>Aufleuchten        | Timeout des Sync Manager<br>Watchdogs | Siehe Watchdog-Funktion, S. 15 für weitere Informationen.                                                                                                                                                                                                    |  |
| Rot                                  | Ausfall des Applikationscontrollers   | Anybus-Modul im Zustand AUSNAHME. Wenn die LEDs RUN und ERR rot leuchten, ist dies ein Anzeichen für ein schwerwiegendes Ereignis, das die Busschnittstelle in einen physisch passiven Zustand versetzt. Wenden Sie sich an den technischen Support von HMS. |  |
| Flackernd                            | Boot-Fehler entdeckt                  | Z. B. aufgrund eines Fehlers beim Firmware-Download.                                                                                                                                                                                                         |  |

### Verbindung/Aktivität

Diese LEDs dienen als Anzeige für den Status und die Aktivität der EtherCAT-Verbindung.

| LED-Zustand          | Anzeige                                | Beschreibung                                          |  |
|----------------------|----------------------------------------|-------------------------------------------------------|--|
| Aus Keine Verbindung |                                        | Verbindung nicht erkannt (oder keine Stromversorgung) |  |
| Grün                 | Verbindung erkannt, keine<br>Aktivität | Verbindung erkannt, kein Datenverkehr erkannt         |  |
| Grün, flackernd      | Verbindung erkannt, Aktivität          | Verbindung erkannt, Datenverkehr erkannt              |  |

### Ethernet-Anschluss (RJ45)

| Pin | Signal | Bemerkungen                                                                               |     |
|-----|--------|-------------------------------------------------------------------------------------------|-----|
| 1   | Tx+    | -                                                                                         |     |
| 2   | Tx-    | -                                                                                         |     |
| 3   | Rx+    | -                                                                                         |     |
| 4   | -      | Normalerweise ungenutzt; um die Signalintegrität zu gewährleisten, sind                   | 1 8 |
| 5   | -      | diese Pins miteinander verbunden und über eine Filterschaltung im Modul mit PE verbunden. |     |
| 6   | Rx-    | -                                                                                         |     |
| 7   | -      | Normalerweise ungenutzt; um die Signalintegrität zu gewährleisten, sind                   |     |
| 8   | -      | diese Pins miteinander verbunden und über eine Filterschaltung im Modul mit PE verbunden. |     |

#### 8. Modi

Die Bus-Schnittstellenmodule stellen zwei Daten-Arrays mit jeweils 224 Bytes zur Verfügung. Ein schreibgeschütztes Array (UC-RF => SPS) legt in den ersten 216 Bytes Daten offen, die vom UC-RF von einzelnen Remote-Geräten gelesen wurden.

Das andere Array, Lese-/Schreibzugriff (SPS => UC-RF), ermöglicht dem UC-RF in den ersten 216 Bytes, die Daten festzulegen, die an die Remote-Geräte gesendet werden sollen.

Die letzten 8 Bytes jedes Arrays werden für die Status- und/oder Befehlskommunikation mit dem UC-RF verwendet.
Die Konfiguration der in den obigen Arrays enthaltenen Daten, die Bedeutung der einzelnen Bytes, ist

definiert und hängt vom nachfolgend als UC-RF bezeichneten Kommunikations-MODUS ab. Sie können den Kommunikationsmodus konfigurieren, indem Sie Byte 217 (Konfigurationsbyte) des SPS => UC-RF-Arrays einstellen, wie in Tab. 1

| Tab. 1 - Kommunikations |
|-------------------------|
|-------------------------|

| MODUS | Bedeutung                    |  |
|-------|------------------------------|--|
| 0x01  | Für Abwärtskompatibilität    |  |
| 0x20  | UC-Konfiguration             |  |
| 0x22  | Target und Position          |  |
| 0x24  | Grundlegende Konfiguration   |  |
| 0x25  | Offset-Konfiguration         |  |
| 0x26  | Target-Konfiguration 1       |  |
| 0x27  | Target-Konfiguration 2       |  |
| 0x28  | Verknüpfungsmodus            |  |
| 0x29  | Unbekannte verknüpfte Geräte |  |
| 0x2A  | Übertragungsqualität         |  |
| 0x2C  | Direkter Speicherzugriff     |  |

#### ACHTUNG:

▶ Das UC-RF verwendet Werte in Formularen im Little-Endian-Format. Die Position und das Target sind 4-Byte-Zahlen mit Vorzeichen, die bei linearen Messungen immer die Messung in Hundertstel Millimetern oder bei Winkelmessungen in Hundertstel Grad darstellen.

Beispiel:  $64\ 00\ 00\ 00 == 1,00\ mm$   $1,00\ mm = 100\cdot 0,01\ mm$   $100 \to 00\ 00\ 00\ 64 \to 64$ Hex Little 00 Endian 00

### 8.1 MODUS 20 - UC-Konfiguration

MODUS 20 dient dem Austausch von Konfigurationen und Befehlen zwischen der SPS und dem UC-RF. Da es sich hierbei um eine Kommunikation handelt, die keine Remote-Geräte einbezieht, werden die gesendeten Daten genau wie bei den Modi 0x28, 0x29, 0x2A, 0x2C erst verarbeitet, wenn sich das Flag "Daten gültig" von 0 auf 1 ändert (siehe 10.2 – UC-RF-Befehl). Im Modus 0x20 sind mehrere Befehle codiert, die durch eine eindeutige ID gekennzeichnet sind. Hinzu kommt ein Steuercode, der ein versehentliches Senden des Befehls verhindert. Einige Befehle erfordern, dass Daten und Parameter wie unten für jeden Befehl angegeben gesendet werden.

Es gibt keine signifikanten Daten, die aus dem UC-RF abgerufen werden müssen, mit Ausnahme des Status des UC-RF, um zu erkennen, dass die gesendeten Daten über das Flag "Daten gültig Ok" (10.1 - UC-RF-Status) verarbeitet wurden.

#### 8.1.1 Befehls-ID 0x01 - Reset-Befehl

Dieser Befehl erfordert einen einfachen Neustart des UC-RE

Befehls-ID: 0x01 Steuerwort: 0xA55A

|        |        |              | set-Befehl |              |
|--------|--------|--------------|------------|--------------|
| Wort   | Byte N | SPS => UC-RF |            | UC-RF => SPS |
| 0x000  | 0      | Befehls-ID   |            |              |
| UXUUU  | 1      | Ox           | 01         |              |
| 0,,001 | 2      | Steuer-      | 0x5A       |              |
| 0x001  | 3      | Wort         | 0xA5       |              |

|       | *** | ***         | ***         |  |
|-------|-----|-------------|-------------|--|
| 0x06C | 216 |             | Vorh. Kanal |  |
| UXUUC | 217 | Modus: 0x20 | Vorh. Modus |  |
| 0x06D | 218 | UC-Befehl   | UC-Status   |  |
| UXUOD | 219 | 00-peletil  |             |  |
| 0x06E | 220 |             |             |  |
| UXUUL | 221 |             | UC-RF-ID    |  |
| 0x06F | 222 |             | 00-NF-ID    |  |
| UXUOF | 223 |             |             |  |



### 8.1.2 Befehls-ID 0x02 - Auf Standardkonfiguration zurücksetzen

Dieser Befehl setzt die im nichtflüchtigen Speicher gespeicherten Konfigurationen (z. B. die Tabelle der zugeordneten Remote-Geräte) auf die werksseitigen Werte zurück, mit Ausnahme der UC-RF-ID, die konstant ist.

Am Ende des Reset-Vorgangs wird das Gerät neu gestartet, um eine neue Initialisierung durchzuführen. Refehls-ID: 0x02

Steuerwort: 0xA55A

|       |        | 0x02         | – Auf Stand<br>zurück | ardkonfiguration<br>setzen |
|-------|--------|--------------|-----------------------|----------------------------|
| Wort  | Byte N | SPS => UC-RF |                       | UC-RF => SPS               |
| 0x000 | 0      | Befehls-ID   |                       |                            |
|       | 1      | 0x02         |                       |                            |
| 0x001 | 2      | Steuer- 0x5A |                       |                            |
|       | 3      | Wort         | 0xA5                  |                            |

 0x06C
 216
 Vorh. Kanal

 217
 Modus: 0x20
 Vorh. Modus

 0x06D
 218
 UC-Befehl
 UC-Status

 219
 UC-RF-ID
 UC-RF-ID

### 8.1.3 Befehls-ID 0x03 – Meldungszähler zurücksetzen

Dieser Befehl setzt die Meldungszähler zurück, die von den zugeordneten Geräten empfangen wurden (siehe 8.9).

Nach Abschluss des Vorgangs wird das UC-RF nicht neu gestartet und sein Betrieb wird nicht unterbrochen.

Befehls-ID: 0x03 Steuerwort: 0xA55A

|        | 0x03 –         | Meldungsz                                                                                          | ähler zurücksetzen                                                                                                           |
|--------|----------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Byte N | SPS => UC-RF   |                                                                                                    | UC-RF => SPS                                                                                                                 |
| 0      | Befehls-ID     |                                                                                                    |                                                                                                                              |
| 1      | 0x03           |                                                                                                    |                                                                                                                              |
| 2      | Steuer-        | 0x5A                                                                                               |                                                                                                                              |
| 3      | Wort           | 0xA5                                                                                               |                                                                                                                              |
|        | Byte N 0 1 2 3 | Byte N         SPS =>           0         Befel           1         0x           2         Steuer- | Byte N         SPS => UC-RF           0         Befehls-ID           1         0x03           2         Steuer-         0x5A |





|       |        | 0x03 – Meldungszä | gszähler zurücksetzen |  |  |
|-------|--------|-------------------|-----------------------|--|--|
| Wort  | Byte N | SPS => UC-RF      | UC-RF => SPS          |  |  |
| 0x06C | 216    |                   | Vorh. Kanal           |  |  |
| UXUbC | 217    | Modus: 0x20       | Vorh. Modus           |  |  |
| 0,000 | 218    | UC-Befehl         | UC-Status             |  |  |
| 0x06D | 219    | 00-pelelii        |                       |  |  |
| 0x06E | 220    |                   |                       |  |  |
| UXUOE | 221    |                   | UC-RF-ID              |  |  |
| 0x06F | 222    |                   | 00-RF-ID              |  |  |
| UXUOF | 223    |                   |                       |  |  |

#### 8.1.4 Befehls-ID 0x0A - Verknüpfungstabelle laden

Dieser Befehl lädt die Tabelle der zugeordneten Geräte aus dem nichtflüchtigen Speicher des UC-RF neu. Diese Tabelle wird automatisch nach jeder Konfigurationssendung im Modus 0x28 gespeichert. Auf diese Weise ist es nicht notwendig, das Verfahren zur Zuordnung des Remote-Geräts zu wiederholen, wenn das UC-RF neu gestartet wird.

Nach Abschluss des Vorgangs wird das UC-RF nicht neu gestartet und sein Betrieb wird nicht unterbrochen.

Befehls-ID: 0x0A Steuerwort: 0xA55A

|       |        | 0x0A -             | Meldungsz | ähler zurücksetzen |
|-------|--------|--------------------|-----------|--------------------|
| Wort  | Byte N | SPS =>             | UC-RF     | UC-RF => SPS       |
| 0x000 | 0      | Befehls-ID<br>0x0A |           |                    |
| UXUUU | 1      |                    |           |                    |
| 0001  | 2      | Steuer-            | 0x5A      |                    |
| 0x001 | 3      | Wort               | 0xA5      |                    |

|       | *** | ***         | ***         |
|-------|-----|-------------|-------------|
| 0x06C | 216 |             | Vorh. Kanal |
| UXU6C | 217 | Modus: 0x20 | Vorh. Modus |
| 0x06D | 218 | UC-Befehl   | UC-Status   |
| UXUOD | 219 | OO-Delelii  |             |
| 0x06E | 220 |             |             |
| UXUUE | 221 |             | UC-RF-ID    |
| 0x06F | 222 |             | 00-NT-ID    |
| UXUOF | 223 |             |             |

#### 8.1.5 Befehls-ID 0x15 - RF-Kanal einstellen

Dieser Befehl legt einen neuen Funkkanal fest, über den mit Remote-Geräten kommuniziert wird. Für zukünftige Implementierungen gibt es ein Feld "CH-Modus", das auf dem Standardwert (0x01) belassen werden sollte.

Beachten Sie, dass die Änderung des RF-Kanals über diesen Befehl derzeit nicht automatisch auch die gleiche Einstellung auf den Remote-Geräten aktualisiert, die manuell angepasst werden müssen. Nach Abschluss des Vorgangs wird das UC-RF nicht neu gestartet und sein Betrieb wird nicht

unterbrochen.

Befehls-ID: 0x15 Steuerwort: 0xA55A CH-Modus: 0x01

RF-Kanal: 0x08-0x24 (Standard: 0x13)

|       |        | 0x15 – RF-Kanal |         |              |
|-------|--------|-----------------|---------|--------------|
| Wort  | Byte N | SPS =>          | UC-RF   | UC-RF => SPS |
| 0x000 | 0      | Befeh           | nls-ID  |              |
| 00000 | 1      | 0x              | 15      |              |
| 0x001 | 2      | Steuer-         | 0x5A    |              |
| 00001 | 3      | Wort            | 0xA5    |              |
| 0000  | 4      | RF-CH-          | Modus   |              |
| 0x003 | 5      | Oxi             | 01      |              |
| 0004  | 6      | RF-Kanal        |         |              |
| 0x004 | 7      | 0x13            |         |              |
|       |        |                 |         | ***          |
| 0x06C | 216    |                 |         | Vorh. Kanal  |
| 00000 | 217    | Modus           | : 0x20  | Vorh. Modus  |
| 0x06D | 218    | UC-E            | Rofohl  | UC-Status    |
| UXUUD | 219    | 00-1            | eiei ii | UC-Status    |
| 0x06E | 220    |                 |         |              |
| UXUUE | 221    |                 |         | UC-RF-ID     |
| 0x06F | 222    |                 |         | 00-N -ID     |
| UXUUF | 223    |                 |         |              |

#### 8.1.6 Befehls-ID 0x1F - Timeout für "Gerät trennen" einstellen

Dieser Befehl legt für jedes Remote-Gerät die Zeitüberschreitung (Timeout) fest, bevor es als getrennt gemeldet wird.

Dem Befehl folgt eine Tabelle mit 16-Bit-Ganzzahlen, die die Zeit in Sekunden anzeigen. Der erste Wert



bezieht sich auf das Gerät, dessen ID in der ersten Position in der Tabelle der verbundenen IDs steht, der zweite auf das zweite usw. (Tab. 2 - MODUS 28 - Speicherorganisation).

Nach Abschluss des Vorgangs wird das UC-RF nicht neu gestartet und sein Betrieb wird nicht unterbrochen

Befehls-ID: 0x1F Steuerwort: 0xA55A

Timeout Gerät [36]: Standard: 10

|        |        | 0x1F         | - Timeout | "Gerät getrennt" |
|--------|--------|--------------|-----------|------------------|
| Wort   | Byte N | SPS => UC-RF |           | UC-RF => SPS     |
| 0x000  | 0      | Befel        | nls-ID    |                  |
| 0,000  | 1      | 0x           | 1F        |                  |
| 0x001  | 2      | Steuer-      | 0x5A      |                  |
| 0,0001 | 3      | Wort         | 0xA5      |                  |
| 0x002  | 4      | RF-CH-       | -Modus    |                  |
| 0X002  | 5      | 0x           | 01        |                  |
| 0x003  | 6      | RF-k         | Kanal     |                  |
| 0x003  | 7      | Ox           | 13        |                  |
|        |        |              |           |                  |
| 0x023  | 70     | Timeout      |           |                  |
| 0x023  | 71     | Gerät        |           |                  |
|        |        |              |           | ***              |
| 0x06C  | 216    |              |           | Vorh. Kanal      |
| 0,000  | 217    | Modus        | s: 0x20   | Vorh. Modus      |
| 0x06D  | 218    | UC-Befehl    |           | UC-Status        |
| OXOOD  | 219    | 00 L         | OCIOIII   | 00 Otalus        |
| 0x06E  | 220    | -            |           |                  |
| UNUOL  | 221    |              |           | UC-RF-ID         |
| 0x06F  | 222    |              | $\leq$    | 00111110         |
| 5,001  | 223    |              | $\leq$    |                  |

### 8.2 MODUS 28 - Verknüpfung

In MODUS 28 ist es möglich, dem UC-RF die IDs von Geräten mitzuteilen, die Teil seines Subnetzwerks sind.

Um ein Remote-Gerät mit dem UC-RF zu verbinden, genügt es, in den SPS=>UC-RF-Speicher an der in der Tabelle 2 gezeigten Position die ID des zuzuordnenden Geräts (ID1, ID2, ...) zu schreiben. Die Position in der ID-Tabelle bestimmt die Position der zugehörigen Daten in den anderen Modi.

Wenn das Gerät nicht bereits mit einer anderen Zentraleinheit verbunden ist, wird es bei der ersten Kommunikation mit dem UC-RF automatisch mit dieser verbunden.

Die ID des zuzuordnenden Geräts kann über den entsprechenden Menüpunkt auf dem Gerät abgelesen werden

Im UC-RF=>SPS-Speicher befindet sich eine Liste der IDs, die keinem UC-RF zugeordnet sind und im abgedeckten Bereich senden.

Tab. 2 – MODUS 28 – Speicherorganisation

|        |        | Aktive Geräte | Freie Geräte     |
|--------|--------|---------------|------------------|
| Wort   | Byte N | SPS => UC-RF  | UC-RF => SPS     |
| 0x000  | 0      |               |                  |
| 00000  | 1      | ID1           | ID1 frei         |
| 0x001  | 2      | וטו           |                  |
| 0,0001 | 3      |               |                  |
| 0x002  | 4      | ID1-Befehl    | Status ID1 frei  |
| 0,002  | 5      |               | Status ID 1 1161 |
| 0x003  | 6      |               |                  |
| 0,000  | 7      | ID2           | ID2 frei         |
| 0x004  | 8      | IDZ           | 102 1161         |
| 0,004  | 9      |               |                  |
| 0x005  | 10     | ID2-Befehl    | Status ID2 frei  |
| UXUUS  | 11     | IDZ-DEIBI II  | Status IDZ ITEI  |

| 0x069 | 210 |             |                  |
|-------|-----|-------------|------------------|
| 0x009 | 211 | IDOC        | ID36 frei        |
| 0x06A | 212 | ID36        | ID30 liel        |
| UXUUA | 213 |             |                  |
| 0x06B | 214 | ID36-Befehl | Status ID36 frei |
| UXUUD | 215 |             | Status IDSO ITEI |
| 0x06C | 216 |             | Vorh. Kanal      |
| UXUUC | 217 | Modus: 0x28 | Vorh. Modus      |
| 0x06D | 218 | UC-Befehl   | UC-Status        |
|       | 219 | OO-Delel II | 00-Status        |



|       |        | Aktive Geräte | Freie Geräte |
|-------|--------|---------------|--------------|
| Wort  | Byte N | SPS => UC-RF  | UC-RF => SPS |
| 0,065 | 220    |               |              |
| 0x06E | 221    |               | UC-RF-ID     |
| 0,065 | 222    |               | UU-RF-ID     |
| 0x06F | 223    |               |              |

Im UC-RF=>SPS-Speicher listet das UC-RF die IDs der online verfügbaren, nicht zugeordneten Geräte auf. die es innerhalb seiner Reichweite kontaktieren kann.

#### 8.3 MODUS 29 - Bereits verbundene Geräte

MODUS 29 ist ähnlich wie MODUS 28, aber im UC-RF=>SPS-Speicher werden die IDs der Geräte angezeigt, die bereits dem UC-RF zugeordnet sind und die im abgedeckten Bereich senden, aber nicht in der Tabelle für die Verknüpfung registriert sind.

Tab. 3 – MODUS 29 – Speicherorganisation

|        |        | Aktive Geräte | Verknüpfte Geräte |  |
|--------|--------|---------------|-------------------|--|
| Wort   | Byte N | SPS => UC-RF  | UC-RF => SPS      |  |
| 0x000  | 0      |               |                   |  |
| 00000  | 1      | ID1           | ID1 frei          |  |
| 0x001  | 2      | וטו           | 101 1161          |  |
| 0,001  | 3      |               |                   |  |
| 0x002  | 4      | ID1-Befehl    | Status ID1 frei   |  |
| 0,1002 | 5      | 10 1 0010111  | Gladad ID 1 II of |  |
| 0x003  | 6      |               |                   |  |
| 0,1000 | 7      | ID2           | ID2 frei          |  |
| 0x004  | 8      |               |                   |  |
|        | 9      |               |                   |  |
| 0x005  | 10     | ID2-Befehl    | Status ID2 frei   |  |
|        | 11     |               |                   |  |
|        |        |               | ***               |  |
|        | 040    |               |                   |  |

 0x069
 210

 211
 ID36

 0x06A
 212

 213
 ID36 frei

|       |        | Aktive Geräte | Verknüpfte Geräte |
|-------|--------|---------------|-------------------|
| Wort  | Byte N | SPS => UC-RF  | UC-RF => SPS      |
| 0x06B | 214    | ID36-Befehl   | Status ID36 frei  |
| UXUOD | 215    | ID30-Belefil  | Status ID30 Irei  |
| 0x06C | 216    |               | Vorh. Kanal       |
| UXUUC | 217    | Modus: 0x29   | Vorh. Modus       |
| 0x06D | 218    | UC-Befehl     | UC-Status         |
| UXUOD | 219    |               | UU-Sidius         |
| 0x06E | 220    |               |                   |
| UXUGE | 221    |               |                   |
| 0x06F | 222    |               | UC-RF-ID          |
|       | 223    |               |                   |

MODUS 29 ist nützlich, um die Konfiguration eines Geräts beim Einschalten abzurufen. In diesem Fall haben die Remote-Geräte, die batteriebetrieben sind, ihre Konfiguration beibehalten, während das UC-RF, das ausgeschaltet wurde, seine Tabelle der zugeordneten Geräte verloren hat. Natürlich könnte die Liste der zugehörigen Geräte in der SPS gespeichert werden, aber wenn Sie eine Konfiguration von Grund auf neu abrufen möchten, kann MODUS 29 nützlich sein.

#### 8.4 MODUS 22 - Target und Position

In MODUS 22 präsentiert das UC-RF im Speicher die Position und den Status, die von den zugeordneten Remote-Geräten kommuniziert werden, und ermöglicht die Einstellung einer Target-Position für jedes Gerät. Um Modus 22 zu aktivieren, schreiben Sie einfach 0x22 in Byte 217 im SPS=>UC-RF-Ausgabepuffer.

Informationen zur Bedeutung und Verwendung der Begriffe "CH-Status" und "CH-Befehl" finden Sie in Kapitel 9.

| Wort  | Byte N | SPS => UC-RF     | UC-RF => SPS |
|-------|--------|------------------|--------------|
| 0x000 | 0      |                  |              |
| UXUUU | 1      | ID1 Target Ouete | ID1-Position |
| 0x001 | 2      | ID1-Target-Quote | IDT-Position |
| UXUUT | 3      |                  |              |
| 0x002 | 4      | ID1-Befehl       | ID1-Status   |
| UXUU2 | 5      | ID I-DeleH       | IDT-Status   |

Tab. 4 – MODUS 22 – Speicherorganisation

| Wort  | Byte N | SPS => UC-RF      | UC-RF => SPS    |
|-------|--------|-------------------|-----------------|
| 0x003 | 6      |                   |                 |
| 0x003 | 7      | ID2-Target-Quote  | ID2-Position    |
| 0x004 | 8      | IDZ-Target-Quote  | 102-208111011   |
| 0X004 | 9      |                   |                 |
| 0x005 | 10     | ID2-Befehl        | ID2-Status      |
| COUXU | 11     | IDZ-Delelii       | IDZ-Status      |
|       |        |                   | ***             |
| 0x069 | 210    |                   |                 |
| 0,009 | 211    | ID36-Target-Quote | ID36-Position   |
| 0x06A | 212    |                   | 1000-1 08111011 |
| UXUUA | 213    |                   |                 |

| 0x069 | 210<br>211 |                   |               |
|-------|------------|-------------------|---------------|
|       | 212        | ID36-Target-Quote | ID36-Position |
| 0x06A |            |                   |               |
|       | 213        |                   |               |
| 0x06B | 214        | ID36-Befehl       | ID36-Status   |
| OXOOD | 215        | IDOO DOIGIII      | iboo otatas   |
| 0x06C | 216        |                   | Vorh. Kanal   |
| UXUUC | 217        | Modus: 0x22       | Vorh. Modus   |
| 0x06D | 218        | UC-Befehl         | UC-Status     |
| UXU6D | 219        |                   |               |
| 0x06E | 220        |                   |               |
| UXU6E | 221        |                   | UC-RF-ID      |
| 0x06F | 222        |                   | 00-NF-ID      |
|       | 223        |                   |               |

Die aktuellen Positions- und Target-Werte werden immer wie folgt ausgedrückt, unabhängig davon, wie die Auflösung auf dem Remote-Gerät eingestellt ist:

| Maßeinheit auf dem<br>Remote-Gerät | Gesendeter Wert  |
|------------------------------------|------------------|
| mm                                 | Hundertstel mm   |
| Zoll                               | Hundertstel mm   |
| Grad                               | Hundertstel Grad |

#### 8.5 MODUS 24 - Grundeinstellung

In MODUS 24 ist es möglich, die Konfiguration eines Remote-Geräts zu lesen oder festzulegen, dessen ID in den letzten 4 Bytes (CH ID) festgelegt ist.

Nachdem Modus 24 eingestellt wurde, wird 0x24 in Byte 217 in den SPS =>UC-RF-Ausgangspuffer geschrieben, wenn das UC-RF vom Remote-Gerät kontaktiert wird und seine grundlegende Konfiguration aus den Parametern in Tab. 5 gelesen oder geschrieben wird.

Details finden Sie in Kapitel 10, wo die Bedeutung und Verwendung der Befehls- (UC-Befehl) und Statuswörter (UC-Status) in den Bytes 218–219 erläutert werden.

Tab. 5 – MODUS 24 – Speicherorganisation

|       |          | Zu schreibende<br>Werte | Gelesene Werte |
|-------|----------|-------------------------|----------------|
| Wort  | Byte N   | SPS => UC-RF            | UC-RF => SPS   |
| 0x000 | 0        |                         |                |
| 0x001 | 2        |                         |                |
| 0x002 | 4<br>5   | Passwort                | Passwort       |
| 0x003 | 6<br>7   | Passwort                | Passwort       |
| 0x004 | 8<br>9   | mm_origin               | mm_origin      |
| 0x005 | 10<br>11 | mm_ongin                | mm_ongin       |
| 0x006 | 12<br>13 | deg_origin              | deg_origin     |
| 0x007 | 14<br>15 | ueg_ongin               | deg_ongin      |
| 0x008 | 16<br>17 | mm_step                 | mm_step        |
| 0x009 | 18<br>19 | -11111_3top             | ππ_σιορ        |
| 0x00A | 20<br>21 | deg_step                | deg_step       |
| 0x00B | 22<br>23 | ueg_step                | ueg_step       |

|         |        | Zu schreibende<br>Werte | Gelesene Werte  |  |
|---------|--------|-------------------------|-----------------|--|
| Wort    | Byte N | SPS => UC-RF            | UC-RF => SPS    |  |
| 0x00C   | 24     |                         |                 |  |
| UXUUC   | 25     | mm_toll                 | mm_toll         |  |
| 0x00D   | 26     | ITIITI_toli             | 11111_toll      |  |
| UXUUD   | 27     |                         |                 |  |
| 0x00E   | 28     |                         |                 |  |
| UXUUL   | 29     | deg_toll                | deg_toll        |  |
| 0x00F   | 30     | deg_toll                | ueg_toii        |  |
| UXUUF   | 31     |                         |                 |  |
| 0x010   | 32     |                         |                 |  |
| 0,010   | 33     | Lincorr                 | Lincorr         |  |
| 0x011   | 34     | LITICOTT                | LITICOTT        |  |
| 0.011   | 35     |                         |                 |  |
| 0x012   | 36     |                         |                 |  |
| 0/01/2  | 37     | Degcorr                 | Degcorr         |  |
| 0x013   | 38     | Dogoon                  | Dogodii         |  |
| 0,010   | 39     |                         |                 |  |
| 0x014   | 40     |                         |                 |  |
| 0,011   | 41     | Radius                  | Radius          |  |
| 0x015   | 42     | riadido                 | riadiao         |  |
| 0,010   | 43     |                         |                 |  |
| 0x016   | 44     |                         |                 |  |
| 0,10.10 | 45     | Radius                  | Radius          |  |
| 0x017   | 46     | - Idaila                | 1.0000          |  |
| 0,011   | 47     |                         |                 |  |
| 0x018   | 48     | count_direction         | count_direction |  |
|         | 49     | DISPLAY                 | DISPLAY         |  |
| 0x019   | 50     | mm_res                  | mm_res          |  |
|         | 51     | inch_res                | inch_res        |  |
| 0x01A   | 52     | deg_res                 | deg_res         |  |
| 0,101,1 | 53     | cycle                   | cycle           |  |

|        |        | Zu schreibende<br>Werte | Gelesene Werte   |
|--------|--------|-------------------------|------------------|
| Wort   | Byte N | SPS => UC-RF            | UC-RF => SPS     |
| 0.010  | 54     | speed                   | speed            |
| 0x01B  | 55     | pswenable               | pswenable        |
| 0x01C  | 56     | arkey_reg               | arkey_reg        |
| UXUTC  | 57     | arkey_shift_reg         | arkey_shift_reg  |
| 0x01D  | 58     | ukey_reg                | ukey_reg         |
| UXUTD  | 59     | ukey_shift_reg          | ukey_shift_reg   |
| 0x01E  | 60     | orgkey_reg              | orgkey_reg       |
| UXUTE  | 61     | orgkey_shift_reg        | orgkey_shift_reg |
| 0x01F  | 62     | flip                    | flip             |
| UXUTF  | 63     | HBrate                  | HBrate           |
| 0x020  | 64     | units                   | units            |
| 0x020  | 65     | measmode                | measmode         |
| 0x021  | 66     | Eco mode time           | Eco mode time    |
| UXUZ I | 67     | Dyn. RSSI TG            | Dyn. RSSI TG     |
| 0,000  | 68     | Offset mm               | Offset mm        |
| 0x022  | 69     | Offset deg              | Offset deg       |

| 0x06A | 212 |             |             |
|-------|-----|-------------|-------------|
| UXUOA | 213 |             | FW Release  |
| 0x06B | 214 |             | rvv nelease |
| UXUOD | 215 |             |             |
| 0x06C | 216 |             | Vorh. Kanal |
| 0,000 | 217 | Modus: 0x24 | Vorh. Modus |
| 0x06D | 218 | UC-Befehl   | UC-Status   |
| UXUOD | 219 | OO-Delelii  | UC-Status   |
| 0x06E | 220 |             |             |
| UXUUE | 221 | Geräte-ID   | UC-RF-ID    |
| 0x06F | 222 | Gerale-ID   | 00-NT-ID    |
| UXUUF | 223 |             |             |



### 8.5.1 Standardwerte und Bedeutung der Parameter

Die Standardparameterwerte der mit dem Netzwerk verbundenen Geräte sind in der folgenden Tabelle aufgeführt.

Die Spalte "Speicher" enthält den numerischen Wert, der im Speicher des Geräts enthalten ist. Dies wird dann in den folgenden Spalten für jede Gerätefamilie in ihrer tatsächlichen Bedeutung erklärt.

Tab. 6 – Standardwerte für MODUS-24-Parameter

|       |          |            | Standardwerte  |          | werte    |                         |
|-------|----------|------------|----------------|----------|----------|-------------------------|
| Wort  | Byte N   | Parameter  | Speicher (hex) | DD51     | DD52R    | MPI                     |
| 0x000 | 0        |            |                |          |          |                         |
| 0x001 | 2<br>3   |            |                |          |          |                         |
| 0x002 | 4        |            |                |          |          |                         |
| 0x003 | 5<br>6   | Passwort   | 0x0000<br>0000 | 22011    | 22011    | 22011                   |
| 00003 | 7<br>8   |            |                |          |          |                         |
| 0x004 | 9        | mm_origin  | 0x0000         | 0 mm     | 0 mm     | 0 mm                    |
| 0x005 | 10<br>11 | mm_ongin   | 0000           | OTHITI   | OTIMI    | 0 111111                |
| 0x006 | 12<br>13 |            | 0x0000         |          |          |                         |
| 0x007 | 14       | deg_origin | 0000           | 0 Grad   | 0 Grad   |                         |
| 0x008 | 15<br>16 |            |                |          |          | $\langle \cdot \rangle$ |
|       | 17<br>18 | mm_step    | 0x0000<br>0064 | 1 mm/r   | 1 mm/r   | $\mid \times \mid$      |
| 0x009 | 19       |            |                |          |          |                         |
| 0x00A | 20<br>21 |            | 0x0000         | 4.0 1/   | 4.0 1/   |                         |
| 0x00B | 22<br>23 | deg_step   | 0001           | 1 Grad/r | 1 Grad/r |                         |

|       |          |                 |                   | Standardy | werte     |           |
|-------|----------|-----------------|-------------------|-----------|-----------|-----------|
| Wort  | Byte N   | Parameter       | Speicher<br>(hex) | DD51      | DD52R     | MPI       |
| 0x00C | 24<br>25 | mm_toll         | 0x0000            | 0,1 mm    | 0,1 mm    | 0,1 mm    |
| 0x00D | 26<br>27 | 11111_011       | 000A              | 0,111111  | 0,111111  | 0,111111  |
| 0x00E | 28<br>29 |                 | 0x0000            |           |           | 2.4.0     |
| 0x00F | 30<br>31 | deg_toll        | 0005              | 0,1 Grad  | 0,1 Grad  | 0,1 Grad  |
| 0x010 | 32<br>33 | Lincorr         | 0x000F            |           |           | 1         |
| 0x011 | 34<br>35 | LINCOR          | 4240              |           |           | 1         |
| 0x012 | 36<br>37 | degcorr         | 0x000F            |           |           | 1         |
| 0x013 | 38<br>39 | aogoon          | 4240              |           |           | '         |
| 0x014 | 40<br>41 | Radius          | 0x0000            |           |           | 100 mm    |
| 0x015 | 42<br>43 | nauius          | 2710              |           |           | 100111111 |
| 0x016 | 44<br>45 |                 | 0x0000            |           |           | 3600/(2 π |
| 0x017 | 46<br>47 | ang_coeff       | 1662              |           |           | Radiant)  |
| 0,010 | 48       | count_direction | 0x00              | 0         | 0         | 0         |
| 0x018 | 49       | DISPLAY         | 0x01              | 180°      | 180°      |           |
| 0x019 | 50       | mm_res          | 0x02              | 2 dezimal | 2 dezimal | 2 dezimal |
| 0x019 | 51       | inch_res        | 0x03              | 3 dezimal | 3 dezimal | 3 dezimal |



|       |        |                  |                   | Standard                                                   | werte                                                                     |                                                                           |
|-------|--------|------------------|-------------------|------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Wort  | Byte N | Parameter        | Speicher<br>(hex) | DD51                                                       | DD52R                                                                     | MPI                                                                       |
| 004 A | 52     | deg_res          | 0x02              | 2 dezimal                                                  | 2 dezimal                                                                 | 2 dezimal                                                                 |
| 0x01A | 53     | cycle            | 0x78              |                                                            |                                                                           | > <                                                                       |
| 0,010 | 54     | speed            | 0x01              | 600 U/min                                                  | 600 U/min                                                                 | 2 m/s                                                                     |
| 0x01B | 55     | passw            | 0x00              | Deaktiviert                                                | Deaktiviert                                                               | Deaktiviert                                                               |
| 0x01C | 56     | arkey_reg        | 0x00              | ArClr                                                      | ArClr                                                                     | ArClr                                                                     |
| UXUIC | 57     | arkey_shift_reg  | 0x00              | L_OFS                                                      | L_OFFS                                                                    | L_OFFS                                                                    |
| 0x01D | 58     | ukey_reg         | 0x01              | ALL                                                        | ALL                                                                       | ALL                                                                       |
| UXUID | 59     | ukey_shift_reg   | 0x00              | P_ORG                                                      | P_ORG                                                                     | P_ORG                                                                     |
|       | 60     | orgkey_reg       | 0x01              |                                                            | d_togo                                                                    | d_togo                                                                    |
| 0x01E | 61     | orgkey_shift_reg | 0x00              |                                                            | OFF                                                                       | OFF                                                                       |
|       | 62     | flip             | 0x00              |                                                            |                                                                           | <b>&gt;</b>                                                               |
| 0x01F | 63     | Hbrate           | 0x23              | Hbrate= 4062,4 ms Hbfast_rate = 380,9 ms Auto-Update = OFF | Hbrate=<br>4062,4 ms<br>Hbfast_rate =<br>380,9 ms<br>Auto-Update<br>= OFF | Hbrate=<br>4062,4 ms<br>Hbfast_rate<br>= 380,9 ms<br>Auto-Update<br>= OFF |
| 0x020 | 64     | units            | 0x00              | mm                                                         | mm                                                                        | mm                                                                        |
| UXU2U | 65     | Modus            | 0x00              | Absolut                                                    | Absolut                                                                   | Absolut                                                                   |
| 0,001 | 66     | Eco mode time    | 0x00              | OFF                                                        | OFF                                                                       | OFF                                                                       |
| 0x021 | 67     |                  | 0x00              |                                                            |                                                                           |                                                                           |
| 0,000 | 68     | Offset mm        | 0x0A              | 10                                                         | 10                                                                        | 10                                                                        |
| 0x022 | 69     | Offset deg       | 0x0A              | 10                                                         | 10                                                                        | 10                                                                        |
|       |        |                  |                   |                                                            |                                                                           |                                                                           |

| Parameter  | Option auf<br>dem<br>Remote-Gerät | Beschreibung                                                                                | Werte<br>(siehe Benutzerhandbuch<br>des Geräts) |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|
| Passwort   |                                   | Numerischer Wert als Passwort ver-<br>wendet                                                |                                                 |
| mm_origin  | . Ausgangs-                       | Dem Ausgangspunkt zugewiesener<br>Wert, wenn die ausgewählte Maßeinheit<br>mm oder Zoll ist | Numerische Werte in<br>Hundertstel Millimeter   |
| deg_origin | punkt                             | Dem Ausgangspunkt zugewiesener<br>Wert, wenn die ausgewählte Maßeinheit<br>Grad ist         | Numerische Werte in<br>Hundertstel Grad         |
| mm_step    |                                   | Umrechnungsfaktor aus Wellendrehun-                                                         | Numerische Werte in<br>Hundertstel Millimeter   |
| deg_step   | Schritt                           | gen und der ausgewählten Maßeinheit.                                                        | Numerische Werte in<br>Hundertstel Grad         |
| mm_toll    | P toll                            | Toleranz der Target-Position, wenn<br>die ausgewählte Maßeinheit mm oder<br>Zoll ist        | Numerische Werte in<br>Hundertstel Millimeter   |
| deg_toll   |                                   | Toleranz der Target-Position, wenn die ausgewählte Maßeinheit Grad ist                      | Numerische Werte in<br>Hundertstel Grad         |
| lincorr    | Lin corr                          | Korrekturfaktor für lineare Messungen                                                       | 1 = 0,000001<br>9999999 = 9,999999              |
| degcorr    | Deg corr                          | Korrekturfaktor für Winkelmessungen                                                         | 1 = 0,000001<br>9999999 = 9,999999              |
| Radius     | Radius                            | Radius der Magnetband-Führung für<br>Winkelmessungen                                        | Numerische Werte in<br>Hundertstel Millimeter   |
| ang_coeff  |                                   | Winkelfaktor                                                                                | Automatisch berechneter<br>Wert                 |



| Parameter            | Option auf<br>dem<br>Remote-Gerät | Beschreibung                                                                          | Werte<br>(siehe Benutzerhandbuch<br>des Geräts)            |
|----------------------|-----------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|
| count_direc-<br>tion | Dir                               | Richtung der positiven Werte. Stellen Sie<br>die positive Drehrichtung der Welle ein. |                                                            |
| Display              | Displ                             | Ausrichtung der Anzeige                                                               |                                                            |
| mm_res               |                                   | Messauflösung, wenn die ausgewählte<br>Maßeinheit mm ist                              | Anzahl der anzuzeigenden<br>Dezimalstellen.                |
| inch_res             | Res                               | Messauflösung, wenn die ausgewählte<br>Maßeinheit Zoll ist                            | 0 ÷ 2 bei mm und Grad                                      |
| deg_res              |                                   | Messauflösung, wenn die ausgewählte<br>Maßeinheit Grad ist                            | 0 ÷ 3 bei Zoll                                             |
| speed                | Geschwin-<br>digkeit              | Maximale zulässige Wellendrehung                                                      | Pro DD:    Speed                                           |
| passw                |                                   | Passwort für den Zugriff auf das Pro-<br>grammiermenü                                 | 0 OFF<br>1 ON                                              |
| arkey_reg            |                                   | ABS/REL Tastenfunktionen                                                              | 0 ABS-REL+CLR<br>1 ABS-REL<br>2 OFF                        |
| arkey_shift_reg      |                                   | ABS/REL + SHIFT  Tastenfunktionen                                                     | 0 Offset laden<br>1 Ausgangspunkt<br>zurücksetzen<br>2 OFF |

| Parameter      | Option auf<br>dem<br>Remote-Gerät | Beschreibung                                                           | Werte<br>(siehe Benutzerhandbuch<br>des Geräts) |
|----------------|-----------------------------------|------------------------------------------------------------------------|-------------------------------------------------|
| ukey_reg       |                                   | EINHEIT<br>Tastenfunktionen                                            | 0 mm-Zoll-Grad<br>1 mm-Zoll                     |
|                |                                   |                                                                        | 2 OFF                                           |
|                |                                   |                                                                        | 0 Ausgangspunkt<br>festlegen                    |
| ukey_shift_reg |                                   | EINHEIT + SHIFT<br>Tastenfunktionen                                    | 1 Schritt festlegen                             |
| 7 0            |                                   |                                                                        | 2 Offsets festlegen                             |
|                |                                   |                                                                        | 3 OFF                                           |
|                |                                   | ORG Tastenfunktionen                                                   | 0 Anzeige "Target"                              |
| orgkey_reg     | t_Sho                             | Anzeigemodus, wenn das Target aktiv ist.                               | 1 Anzeige "To go"                               |
|                |                                   | Siehe den entsprechenden Menüpunkt<br>im Handbuch für das Remote-Gerät | 2 OFF                                           |
|                |                                   | ORG + SHIFT                                                            |                                                 |
| orgkey_shift_  |                                   | Tastenfunktionen                                                       | 0 Menü "Target"                                 |
| reg            |                                   | § <u>A</u> + O                                                         | 1 OFF                                           |
|                |                                   |                                                                        | 0 ▶                                             |
| flip           |                                   | Target-Richtung                                                        | 1◀                                              |
|                |                                   |                                                                        |                                                 |



| Parameter        | Option auf<br>dem<br>Remote-Gerät | Beschreibung                                              | Werte<br>(siehe Benutzerhandbuch<br>des Geräts) |
|------------------|-----------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Hbrate           | Hb rt Hbfrt HBAUp                 | 7 6 5 4 3 2 1 0<br>HBAUp Hbfrt Hb rt                      | Siehe Betriebsanleitung<br>des Remote-Geräts    |
| units            |                                   | Verwendete Maßeinheit                                     | 0 Millimeter<br>1 Zoll<br>2 Grad                |
| measmode         |                                   | ABS/REL-Modus                                             | 0 ABS<br>1 REL                                  |
| Eco mode<br>time | d tout                            | Leerlaufzeit, bevor sich der Bildschirm<br>ausschaltet    | 0 OFF<br>1 1 s<br>2 2 s<br><br>255 255 s        |
| Offset mm        |                                   | Verwendeter Offset-Index, wenn die<br>Maßeinheit mm ist   | 0 ÷ 9 Offset 0 ÷ 9 On<br>10 Offset OFF          |
| Offset deg       |                                   | Verwendeter Offset-Index, wenn die<br>Maßeinheit Grad ist | 0 ÷ 9 Offset 0 ÷ 9 On<br>10 Offset OFF          |

### 8.6 MODUS 25 - Offset-Konfiguration

In MODUS 25 ist es möglich, den Wert der Offsets zu lesen oder festzulegen, die auf einem Remote-Gerät gespeichert sind, dessen ID in den letzten 4 Bytes (CH ID) festgelegt ist.

Wenn Modus 25 eingestellt ist und 0x25 in Byte 217 geschrieben wird, wenn das UC-RF vom Remote-Gerät kontaktiert wird, werden die 10 auf dem Gerät gespeicherten Offsets gelesen oder geschrieben, siehe Tab. 7.

Details finden Sie in Kapitel 10, wo die Bedeutung und Verwendung der Befehls- (UC Command) und Statuswörter (UC Status) in der Speicherorganisation der Bytes 218–219 erläutert werden.

Tab. 7 - MODUS 25 - Speicherorganisation

|       |        |                        | ,               |
|-------|--------|------------------------|-----------------|
|       |        | Zu schreibende Werte   | Gelesene Werte  |
| Wort  | Byte N | SPS => UC-RF           | UC-RF => SPS    |
| 0x000 | 0      |                        |                 |
| UXUUU | 1      |                        |                 |
| 0x001 | 2      |                        |                 |
|       | 3      |                        |                 |
| 0x002 | 4      |                        |                 |
| 0,002 | 5      | mm_offset[1]           | mm_offset[1]    |
| 0x003 | 6      | 11111_011001[1]        | 11111_011001[1] |
| 0,000 | 7      |                        |                 |
|       | 40     |                        |                 |
| 0x014 | 40     |                        |                 |
|       | 42     | mm_offset[10]          | mm_offset[10]   |
| 0x015 | 43     |                        |                 |
|       | 44     |                        |                 |
| 0x016 | 45     |                        |                 |
|       | 46     | deg_offset[1]          | deg_offset[1]   |
| 0x017 | 47     |                        |                 |
|       |        |                        |                 |
| 0x028 | 80     |                        |                 |
|       | 81     | deg_offset[10] deg_off | deg_offset[10]  |
| 0x029 | 82     | ueg_onset[10]          | ueg_onset[10]   |
|       | 83     |                        |                 |
|       | 040    |                        | V 1 1/2 1       |
| 0x06C | 216    | M 1 0 05               | Vorh. Kanal     |
|       | 217    | Modus: 0x25            | Vorh. Modus     |
| 0x06D | 218    | UC-Befehl              | UC-Status       |
|       | 219    |                        |                 |



|       |        | Zu schreibende Werte | Gelesene Werte |
|-------|--------|----------------------|----------------|
| Wort  | Byte N | SPS => UC-RF         | UC-RF => SPS   |
| 0x06E | 220    | Geräte-ID            | UC-RF-ID       |
|       | 221    |                      |                |
| 0x06F | 222    |                      |                |
|       | 223    |                      |                |

#### 8.6.1 Standardwerte und Bedeutung der Parameter

Der Standardwert aller Offsets ist 0, und daher ist der Wert 0x0000 0000 an den entsprechenden Positionen zu finden. Bei Werten, die sich auf die Messung von Längen beziehen, wird der Wert in hundertstel Millimetern ausgedrückt. Bei Werten, die sich auf die Messung von Graden beziehen, wird der Wert in hundertstel Grad ausgedrückt.

### 8.7 MODUS 26 und 27 - Target-Konfiguration

In MODUS 26 und 27 ist es möglich, den Wert der Targets zu lesen oder festzulegen, die auf einem Remote-Gerät gespeichert sind, dessen ID in den letzten 4 Bytes (CH ID) festgelegt ist. Stellen Sie Modus 26 oder Modus 27 ein, indem Sie 0x26 bzw. 0x27 in Byte 217 schreiben, wenn das UC-RF vom Remote-Gerät kontaktiert wird:

- im Modus 26 werden die Targets in mm (bzw. Zoll) gelesen oder geschrieben.
- im Modus 27 werden die Targets in Grad gelesen oder geschrieben. Siehe Tab. 8

Weitere Details siehe Kap. 10, wo die Bedeutung und Verwendung der Befehls- (UC-Befehl) und Statuswörter (UC-Status) in den Bytes 218–219 erläutert werden.

Tab. 8 – MODUS 26 und 27 – Speicherorganisation – MODUS 26: Target in mm, MODUS 27: Target in Grad

|       |          |                       | •              |
|-------|----------|-----------------------|----------------|
|       |          | Zu schreibende Werte  | Gelesene Werte |
| Wort  | Byte N   | SPS => UC-RF          | UC-RF => SPS   |
| 0x000 | 0        |                       |                |
| 0x001 | 2        |                       |                |
| 0x002 | 4<br>5   | ±==±[4]               | tt[4]          |
| 0x003 | 6<br>7   | target[1]             | target[1]      |
| 0x004 | 8        | torget[0]             | torget[0]      |
| 0x005 | 10<br>11 | target[2]             | target[2]      |
|       |          |                       |                |
| 0x040 | 128      | target[32]            | target[32]     |
|       | 129      |                       |                |
| 0x041 | 130      |                       |                |
|       | 131      |                       |                |
| 0x06C | 216      |                       | Vorh. Kanal    |
|       | 217      | Modus: 0x26 oder 0x27 | Vorh. Modus    |
| 0x06D | 218      | UC-Befehl             | voiri. iviodus |
|       | 219      |                       | UC-Status      |
| 0x06E |          |                       |                |
|       | 222      |                       |                |
|       |          | 223                   | Geräte-ID      |
| 0x06F | 222      |                       |                |
|       | 223      |                       |                |

### 8.7.1 Standardwerte und Bedeutung der Parameter

Der Standardwert aller Targets ist 0, und daher ist der Wert 0x0000 0000 an den entsprechenden Positionen zu finden.

Bei Werten, die sich auf die Messung von Längen beziehen, wird der Wert in hundertstel Millimetern ausgedrückt.

Bei Werten, die sich auf die Messung von Graden beziehen, wird der Wert in hundertstel Grad ausgedrückt.



## 8.8 MODUS 2C - Direkter Speicherzugriff

MODUS 2C ermöglicht den direkten Zugriff auf eine Teilmenge der in den Modi 4, 5, 6 und 7 des Remote-Geräts aufgeführten Parameter, dessen ID in den letzten 4 Bytes (CH ID) festgelegt ist. Wenn Modus 2C eingestellt ist, indem 0x2C in Byte 217 geschrieben wurde, wird bei Kontaktaufnahme des Remote-Geräts mit dem UC-RF die dem in Byte 7 (Länge) enthaltenen Wert entsprechende Anzahl von Bytes gelesen oder geschrieben, beginnend mit dem in Byte 6 (Startadresse) angegebenen Byte in der Parametertabelle, die sich auf den in Byte 4 (Modus) angegebenen Modus bezieht, siehe Tab. 9

Weitere Details siehe Kap. 10, wo die Bedeutung und Verwendung der Befehls- (UC-Befehl) und Statuswörter (UC-Status) in den Bytes 218–219 erläutert werden.

|       |        | Zu schreibende<br>Werte | Gelesene Werte |
|-------|--------|-------------------------|----------------|
| Wort  | Byte N | SPS => UC-RF            | UC-RF => SPS   |
| 0x000 | 0      |                         |                |
| 00000 | 1      |                         |                |
| 0x001 | 2      |                         |                |
| 00001 | 3      |                         |                |
| 0x002 | 4      | Modus                   | Modus          |
| 0,002 | 5      |                         |                |
| 0x003 | 6      | Startadresse            | Startadresse   |
| 00000 | 7      | Länge                   | Länge          |
| 0x004 | 8      |                         |                |
| 0,004 | 9      |                         |                |
| 0x005 | 10     |                         |                |
| 0,000 | 11     |                         |                |

Tab. 9 – MODUS 2C – Speicherorganisation



|       |                | Zu schreibende<br>Werte | Gelesene Werte |
|-------|----------------|-------------------------|----------------|
| Wort  | Byte N         | SPS => UC-RF            | UC-RF => SPS   |
| 0x006 | 12<br>13       |                         |                |
| 0x007 | 14<br>15       |                         |                |
| 0x008 | 16<br>17       |                         |                |
| 0x009 | 18<br>19       | Daten                   | Daten          |
| 0x00A | 20<br>21<br>22 |                         |                |
| 0x00B | 22<br>23       |                         |                |
| 0x00C | 24<br>25       |                         |                |
| 0x00D | 26<br>27       |                         |                |
| 0x00E | 28<br>29       |                         |                |
| 0x00F | 30<br>31       |                         |                |
| 0x010 | 32<br>33       |                         |                |
| 0x011 | 34<br>35       |                         |                |
| 0x012 | 36<br>37       | Daten                   | Daten          |
| 0x013 | 38<br>39       | Dateri                  | Dateri         |
| 0x014 | 40<br>41       |                         |                |
| 0x015 | 42<br>43       |                         |                |
| 0x016 | 44<br>45       |                         |                |
| 0x017 | 46<br>47       |                         |                |
| 0x018 | 48<br>49       |                         |                |

| 0x06C | 216 | $\bigvee$   | Vorh. Kanal |
|-------|-----|-------------|-------------|
| 0,000 | 217 | Modus: 0x2C | Vorh. Modus |



|       |        | Zu schreibende<br>Werte | Gelesene Werte |  |  |  |  |
|-------|--------|-------------------------|----------------|--|--|--|--|
| Wort  | Byte N | SPS => UC-RF            | UC-RF => SPS   |  |  |  |  |
| 0,000 | 218    | UC-Befehl               | UC-Status      |  |  |  |  |
| 0x06D | 219    | 00-belefil              | UU-Status      |  |  |  |  |
| 0x06E | 220    |                         |                |  |  |  |  |
| UXUUE | 221    | CHID                    | UC-RF-ID       |  |  |  |  |
| 0x06F | 222    | CHID                    | UU-RF-ID       |  |  |  |  |
| UXUOF | 223    |                         |                |  |  |  |  |

## 8.9 MODUS 2A - Übertragungsqualität

In MODUS 2A enthält der UC-RF=>SPS-Speicher anstelle der Position und des Status des Remote-Geräts die folgenden Indikatoren für die Qualität der Kommunikation zwischen dem UC-RF und den Remote-Geräten:

- Last Comm Counter (Zähler letzte Kommunikation): Der Zähler wird jedes Mal um 1 erhöht, wenn das UC-RF eine korrekte Kommunikation vom zugeordneten Remote-Gerät empfängt. Die Übereinstimmung zwischen der auf dem Remote-Gerät eingestellten Übertragungsrate und der Erhöhung des Zählers ist ein Maß für das Vorhandensein und die Güte der RF-Verbindung.
- Qualitätsstatus: enthält die geschätzten Werte von LQI und RSSI, welche Indikatoren für die Qualität der RF-Verbindung mit dem Remote-Gerät sind, siehe Abb. 8-1.

| Wort  | Byte N | SPS => UC-RF | UC-RF => SPS             |
|-------|--------|--------------|--------------------------|
| 0x000 | 0      |              |                          |
| 00000 | 1      | ID1-Target-  | ID1 Last Comm Counter    |
| 0x001 | 2      | Quote        | IDT Last Commit Counter  |
| 0,001 | 3      |              |                          |
| 0x002 | 4      | ID1-Befehl   | ID1 QualStatus           |
| 0,002 | 5      | ID I DOIOIII | ID I Quai. Otatus        |
| 0x003 | 6      |              |                          |
| 0,000 | 7      | ID2-Target-  | ID2 Last Comm Counter    |
| 0x004 | 8      | Quote        | IDZ Eddi Comini Codinici |
| 0,004 | 9      |              |                          |
| 0x005 | 10     | ID2-Befehl   | ID2 QualStatus           |
| 0,000 | 11     | 102 D010111  | IDZ Qual. Otatus         |

Tab. 10 - MODUS 2A - Speicherorganisation



| Wort  | Byte N | SPS => UC-RF  | UC-RF => SPS      |
|-------|--------|---------------|-------------------|
| 0x069 | 210    |               |                   |
| 0x009 | 211    | ID36-Target-  | ID36 Last Comm    |
| 0x06A | 212    | Quote         | Counter           |
| UXU6A | 213    |               |                   |
| 0x06B | 214    | ID36-Befehl   | ID36 QualStatus   |
| UXUUD | 215    | ID30-Delel II | IDSO Quali-Status |
| 0x06C | 216    |               | Vorh. Kanal       |
| UXUUC | 217    | Modus: 0x2A   | Vorh. Modus       |
| 0x06D | 218    | UC-Befehl     | UC-Status         |
| UXUOD | 219    | 00-peletii    | UU-Sidius         |
| 0x06E | 220    |               |                   |
| UXUGE | 221    |               | UC-RF-ID          |
| 0,065 | 222    |               | UU-KF-IU          |
| 0x06F | 223    |               |                   |

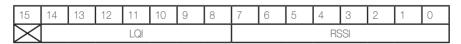



Abb. 8-1 – Inhalt des Qualitätsstatusregisters

# 9. Status und Steuerung von Remote-Geräten

In den Modi 2, 8 und A, in denen die Zustände mehrerer Geräte angezeigt werden, kann jedes Gerät seinen Status anzeigen und/oder Befehle senden.

### 9.1 Gerätestatus

In jeder Kommunikation kommuniziert das Gerät seinen Status mit einem 16-Bit-Wort, das wie in Abb. 9-1 angeordnet ist.

| 15        | 14            | 13       | 12             | 11          | 10         | 9                  | 8            | 7           | 6 | 5 | 4                          | 3           | 2 | 1 | 0 |
|-----------|---------------|----------|----------------|-------------|------------|--------------------|--------------|-------------|---|---|----------------------------|-------------|---|---|---|
| Verknüpft | Batt. schwach | Getrennt | Positionierung | In Position | DrehzFehl. | ואומוסוו וו וסונסו | MoRoishoitos | Adilosdi ig | = |   | Fehler Sensor<br>kein Band | Kein Sensor |   |   |   |

Abb. 9-1 - Remote-Gerätestatus - Bedeutung der Bits



Unten sehen Sie eine Liste der Bits und ihrer Bedeutung, wenn sie den Wert 1 haben:

Verknüpft: Das Gerät ist einem UC-RF zugeordnet.

Batt. schwach: Die Batterie ist fast leer und muss so schnell wie möglich ausgetauscht werden. Getrennt: Das Gerät ist nicht verbunden oder kommuniziert nicht richtig (siehe Kapitel 8.1.6)

Positionierung: Das Gerät ist im Target-Modus. In Position: Das Gerät ist in der Target-Position.

Drehz.-Fehl.: Das Gerät hat seine aktuelle Position aufgrund einer zu schnellen Bewegung des

Messgeräts verloren.

Kein Band/MPI: Der Sensor erkennt das Magnetband nicht.

Sensor Fehl. DD: Ein Fehler wurde am magnetischen Sensor festgestellt.

Kein Sensor: Der Sensor wird am Steuerungsanschluss nicht erkannt (nur für MPI)

auch: Maßeinheit

| Bit 9 | Bit 8 | Einheit         |
|-------|-------|-----------------|
| 0     | 0     | mm              |
| 0     | 1     | Zoll            |
| 1     | 0     | Grad            |
| 1     | 1     | Nicht verwendet |

## Auflösung

| Bit 7 | Bit 6 | Auflösung       |
|-------|-------|-----------------|
| 0     | 0     | 0               |
| 0     | 1     | 0,0             |
| 1     | 0     | 0,00            |
| 1     | 1     | Nicht verwendet |

## 9.2 Gerätebefehl

Remote-Geräte können bei der Verfolgung eines Targets mit dem in Abb. 9-2 definierten Befehlswort aktiviert oder deaktiviert werden.

| 15                   | 14           | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------------|--------------|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| Target<br>einstellen | Target aktiv |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

Abb. 9-2 - Befehl für Remote-Gerät - Bedeutung der Bits



## Einstellen eines Targets:

- Legen Sie einen angemessenen Wert an der Position relativ zum Zielgerät fest.
- Schreiben Sie das entsprechende Befehlswort 0x8000.

## Aktivieren eines Targets:

- Schreiben Sie das entsprechende Befehlswort 0xC000.

## 10. Status und Steuerung der Zentraleinheit

In den Modi 4, 5, 6 und 7 kommuniziert das UC-RF jeweils nur mit einem Gerät, dessen ID in den letzten 4 Bytes des SPS=>UC-RF-Speichers angegeben ist.

In diesen Modi ist es möglich, einen Befehl zu senden und den Status des Vorgangs über die 16-Bit-Wörter anzuzeigen, die sich im SPS=>UC-RF-Speicher für den Befehl bzw. UC-RF=>SPS für den Status in den Bytes 218–219 befinden.

#### 10.1 UC-RF-Status

Der Status der Kommunikation wird im 16-Bit-Statuswort gemeldet, das gemäß Abb. 10-1 organisiert ist.

| 15                 | 14         | 13                    | 12                    | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3                    | 2 | 1 | 0      |
|--------------------|------------|-----------------------|-----------------------|----|----|---|---|---|---|---|---|----------------------|---|---|--------|
| Trigger<br>ausgef. | Getriggert | Daten<br>gültig<br>OK | Zeigt<br>gespeicherte |    |    |   |   |   |   |   |   | Komm.<br>fehlgeschl. |   |   | Warten |

Abb. 10-1 - UC-RF-Status

Unten sehen Sie eine Liste der Bits und ihrer Bedeutung, wenn sie den Wert 1 haben:

**Trigger ausgef.:** Der gesendete Befehl wurde ausgeführt. **Getriggert:** Der Befehl wurde vom UC-RF empfangen.

**Daten gültig OK**: Die Daten im SPS=>UC-RF-Puffer wurden in den Speicher für den ausgewählten

Modus kopiert.

Zeigt gespeicherte: Die Daten im UC-RF=>SPS-Puffer sind eine Kopie der Daten, die im SPS=>UC-

RF-Speicher des ausgewählten Modus gespeichert sind.

Komm. fehlgeschl.: Die Kommunikation zwischen dem UC-RF und dem Remote-Gerät ist

fehlgeschlagen.

Warten: Das UC-RF wartet darauf, dass das Remote-Gerät mit ihm Kontakt aufnimmt, um

den Befehl auszuführen.

### 10.2 UC-RF-Befehl

Das UC-RF muss unter Verwendung des in Abb. 10-2 dargestellten Befehlswortes über die auszuführenden Vorgänge angeleitet werden.

| 15      | 14  | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1              | 0               |
|---------|-----|----|----|----|----|---|---|---|---|---|---|---|---|----------------|-----------------|
| Trigger | R/W |    |    |    |    |   |   |   |   |   |   |   |   | Gesp.<br>lesen | Daten<br>gültig |

Fig. 10-2 – UC-RF-Befehl



### 10.2.1 Ausführen eines Befehls

In den Modi 4, 5, 6 und 7 müssen Lese- und Schreibvorgänge mit den entsprechenden Flags im Befehlswort gestartet werden.

#### R/W

Teilt dem UC-RF mit, ob Daten vom Remote-Gerät gelesen werden sollen, die im UC-RF=>SPS-Puffer angezeigt werden, oder ob Daten vom SPS=>UC-RF-Puffer auf das Remote-Gerät geschrieben werden sollen. Insbesondere:

- 0 I esen
- 1 Schreiben In particolare:
- 0 lettura
- 1 scrittura

## Trigger

Um das UC-RF anzuweisen, den Lese- oder Schreibbefehl auszuführen, muss das Trigger-Flag auf 1 gesetzt sein.

Um eine unbeabsichtigte Wiederholung eines Befehls zu vermeiden, wird das Trigger-Flag nur einmal wirksam. Danach muss es auf Null und dann wieder auf Eins zurückgesetzt werden, um einen neuen Befehl auszuführen.

Wenn der Befehl vom UC-RF akzeptiert wird, wird das Trigger-Flag des Statusworts auf Eins gesetzt (siehe Abb. 10-1). Die Ausführung eines Befehls erfolgt nicht sofort, sondern erfordert die Herstellung einer Kommunikation zwischen dem UC-RF und dem Remote-Gerät. Dies wird vom Remote-Gerät mit einem Zeitablauf initiiert, der von folgenden Faktoren abhängt: HB-Frequenz, Aktivierung oder Nichtaktivierung des Indikators (im Auto-Modus), Anzahl der im selben Bereich vorhandenen Geräte usw. UC-RF signalisiert diese Wartesituation mit einer Eins des Flags "Warten".

**ACHTUNG:** Eine Änderung des Modus oder der Werte im Schreibpuffer während der Wartephase führt zur Löschung des Befehls.

Wenn der Befehl ausgeführt wird, wird das Statuswort-Flag "Trigger ausgef." auf Eins gesetzt (siehe Abb. 10-1).

Zu diesem Zeitpunkt ist es möglich, das Trigger-Befehlsflag auf Null zu setzen und es möglicherweise für die Ausführung eines neuen Befehls wieder auf Eins zu setzen.

## 10.3 Modusänderung

Der Benutzer hat Zugriff auf zwei Pufferspeicher, einen zum Schreiben, SPS=>UC-RF, und einen zum Lesen, UC-RF=>SPS.

Je nach ausgewähltem Modus spiegelt das UC-RF seinen internen Speicher in diesen Puffern. Das bedeutet, dass in einigen Fällen, wenn von einem Modus in einen anderen gewechselt wird, die von der SPS in den Schreibpuffer (SPS=>UC-RF) geschriebenen Werte, die sich auf den aktuellen Modus beziehen, in den entsprechenden Speicherbereichen des neu ausgewählten Modus überschrieben werden können.

Um dies zu vermeiden, verfügt das UC-RF über zwei Mechanismen.

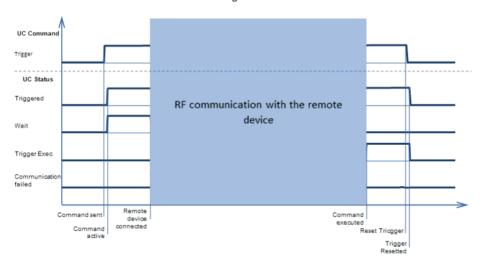
Daten gültig

Der Schreibpuffer wird nicht im internen Speicher des UC-RF gespeichert und daher nicht gelesen, wenn dieses Flag Null ist.



## Gesp. lesen

. Wenn dieses Bit auf 1 gesetzt wird, können die Daten, die im aktuellen Modus tatsächlich ins UC-RF geschrieben wurden, gelesen werden. In der Praxis werden im Lesepuffer (UC-RF=>SPS) anstelle der Eingangsdaten die im Schreibpuffer gespeicherten Daten für den ausgewählten Modus innerhalb des UC-RF gemeldet.


Wenn Sie von einem Modus in einen anderen wechseln, wird empfohlen, Folgendes zu tun:

- Setzen Sie "Daten gültig" auf Null zurück.
- Wählen Sie einen neuen Modus.
- Setzen Sie "Gesp. lesen" auf Eins.
- Lesen Sie die Daten vom Lesepuffer (UC-RF=>SPS).
- Kopieren Sie die im vorherigen Schritt eingelesenen Daten in den Schreibpuffer (SPS=>UC-RF).
- Setzen Sie "Daten gültig" auf Eins.

Zu diesem Zeitpunkt sind die Kommunikationspuffer zwischen SPS und UC-RF sowie dem internen Speicher des UC-RF synchronisiert, und Sie können die gewünschten Vorgänge im neuen Modus fortsetzen

**ANMERKUNG:** Es ist möglich, das Lesen der gespeicherten Daten zu überspringen und die gewünschten Schreibdaten gleich festzulegen. Bedenken Sie jedoch, dass dadurch die gespeicherten Daten ohne Überprüfung überschrieben werden, wenn "Daten gültig" auf Eins gesetzt ist.

## 10.4 Zeitablauf der Status- und Befehlsflags







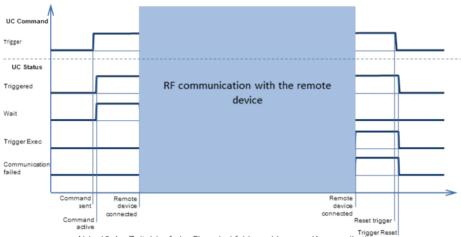



Abb. 10-4 – Zeitablauf der Flags bei fehlgeschlagener Kommunikation



Abb. 10-5 – Zeitablauf der Flags bei nicht erreichbarem Gerät



# 10.5 Verfahren zum Senden von Befehlen Notations Variable [n]: bit number n of the variable (0= LSB) Buffer[n]: Byte number n of the buffer (0= first byte) In round brackets (...) pseudo code for the set/reset of bits (flags) Variables PLC-UC: write buffer on UC-RF (224 bytes) UC-PLC: UC-RF read buffer (224 bytes) UC Status: status word at byte 219 of UC-PLC (UC-PLC [219]) UC Command: command word at byte 219 of UC-PLC (UC-PLC [219]) NOTE The Timeout indication indicates a generic one control function of the Copy the UC\_PLC buffer into the PLC\_UC one PLC\_UC = UC\_PLC expected time in a cycle Set UC Command[14] = 0 (UC Command &= 0x4000)

## Anhang A - Bus-Schnittstellenanschluss

Die Ethernet-Schnittstelle unterstützt 10/100 Mbit, Voll- oder Halbduplexbetrieb.

| # | ELEMENT                            |
|---|------------------------------------|
| 1 | Netzwerk-Status-LED                |
| 2 | Modul-Status-LED                   |
| 3 | Verbindung/Aktivitäts-LED (Port 1) |
| 4 | Verbindung/Aktivitäts-LED (Port 2) |

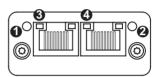



Abb. 10-6 – Anschlüsse und LEDs an der Vorderseite

| Pin-Nr.    | Beschreibung                                               |     |
|------------|------------------------------------------------------------|-----|
| 1, 2, 4, 5 | Über ein serielles RC-Glied mit der Gehäusemasse verbunden |     |
| 3          | RD -                                                       |     |
| 6          | RD+                                                        |     |
| 7          | TD -                                                       | 1 8 |
| 8          | TD+                                                        |     |
| Gehäuse    | Kabelabschirmung                                           |     |

Abb. 10-7 - Pinbelegung des Anschlusses

# Anhang B - Technische Daten

| Elektrische Daten   |             |  |  |
|---------------------|-------------|--|--|
| Versorgungsspannung | 24 VDC ±5 % |  |  |
| Stromaufnahme       | 50 mA       |  |  |
| Verpolung           | Geschützt   |  |  |
| Spannungsübergänge  | Geschützt   |  |  |



| Elektrische Daten              |                                                                |  |  |  |
|--------------------------------|----------------------------------------------------------------|--|--|--|
|                                | Nicht geschützt.                                               |  |  |  |
| Kurzschluss                    | Bauen Sie in der Versorgungsleitung eine 100-mA-Sicherung ein. |  |  |  |
| Frequenzbereich                | 2400–2416 MHz                                                  |  |  |  |
| Schnittstellenoptionen         | Ethernet/IP Ethercat IO Profinet IO Modbus/TCP                 |  |  |  |
| Antennenanschluss              | SMA-RP-Buchse                                                  |  |  |  |
| Stromversorgungsan-<br>schluss | 3-polige Klemmenleiste, 3,81 mm Rastermaß                      |  |  |  |

| Mechanische Daten |                                           |  |  |
|-------------------|-------------------------------------------|--|--|
| Montage           | Hutschiene (DIN)                          |  |  |
| Gewicht           | ≈50 g                                     |  |  |
| Gehäusematerial   | weiß-graues ABS-verstärktes Polycarbonat, |  |  |
| selbstverlöschend | Geschützt                                 |  |  |
| Abmessungen       | 79x101x35 mm                              |  |  |

| Umgebungsbedingungen  |                                |  |  |  |
|-----------------------|--------------------------------|--|--|--|
| Betriebs-             | 0 ÷ +50 °C                     |  |  |  |
| temperatur            |                                |  |  |  |
| Lagertemperatur       | -20 ÷ +70 °C                   |  |  |  |
| Rel. Luftfeuchtigkeit | max. 80 %, nicht kondensierend |  |  |  |
| Umgebung              | im Innenbereich                |  |  |  |
| Höhe                  | bis zu 2000 m                  |  |  |  |
|                       | Schutzklasse II                |  |  |  |
| Nennwerte             | Überspannungskategorie II      |  |  |  |
|                       | Verschmutzungsgrad 2           |  |  |  |

# EU-KONFORMITÄTSERKLÄRUNG (DoC)

NAME DES UNTERNEHMENS: POSTANSCHRIFT: POSTLEITZAHL UND STADT: TEI FFONNUMMER:

F-MAIL-ADRESSE

Elesa S.p.a. Via Pompei 29 20900 Monza +39 039 28111 info@elesa.com

## erklärt, dass dieses Dokument in alleiniger Verantwortung herausgegeben wird und folgendes Produkt hetrifft

PRODUKT: Steuergerät für DD51-E-RF DD52R-E-RF MPI-R10-RF

GERÄTEMODELL: UC-RF MARKENZEICHEN: Elesa

# Der Gegenstand der oben beschriebenen Erklärung erfüllt die relevanten Harmonisierungsrechtsvorschriften der Gemeinschaft:

2014/30/EU (EMV): Richtlinie über elektromagnetische Verträglichkeit

2011/65/EU (RoHS): Einschränkung der Verwendung von verschiedenen gefährlichen Stoffen in elektrischen und elektronischen Geräten

## Folgende harmonisierte Normen und technische Spezifikationen wurden angewendet:

EN 61326-1:2013

#### **Benannte Stelle:**

Nicht involviert (Anhang II – Konformitätsbewertung Modul A)

ORT, DATUM: CARLO BERTANI

Monza – Italien GESCHÄFTSFÜHRER

11 12 2024 GENERAL MANAGER



# Elesa S.p.A., Monza, Dezember 2024

Die Texte und Beispieldarstellungen wurden mit großer Sorgfalt verfasst, trotzdem können manchmal Fehler auftreten.

Die Firma Elesa S.p.A. kann für fehlende oder falsche Informationen und die daraus resultierenden Folgen weder rechtlich verantwortlich noch haftbar gemacht werden.

Die Firma Elesa S.p.A. behält sich das Recht vor, die elektronischen Stellungsanzeiger oder Teile davon und/oder die beiliegenden Broschüren ohne vorherige Ankündigung zu ändern oder zu verbessern.



ELESA S.p.A.

Via Pompei, 29 20900 Monza (MB) Italien Telefon +39 039 28111

info@elesa.com www.elesa.com