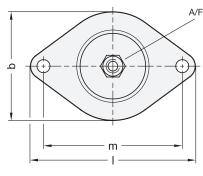
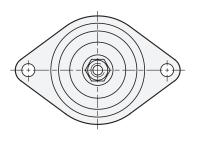

Vibration Damping Elements

Rubber, Flange Steel, for Tensile / Compressive Load





- For compressive load
- For tensile / compressive load

Ū		2								
d ₁		d_2	b	d ₃	d_4	h ₁	h ₂	Length I	m	A/F
Type A	Type B			Type B						
40	-	M 8	75	-	9	33	2,5	114	96	15
-	56	M 8	75	67	9	33	2.5	114	96	15

Specification

Vibration damping element Natural rubber (NR)

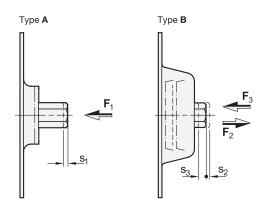
- Vulcanized
- Black
- Operating temperature -40 °C to +80 °C
- Hardness Shore A ±5

- Soft	40
- Medium	60
- Hard	70

Contact plate / Threaded inser	t
Steel zinc plated, blue passivated	b

ST

RoHS


Vibration damping elements GN 148.4 absorb vibrations to protect the environment of a machine from vibrations and noise.

Type B is designed primarily for tensile loads, making it suitable for overhead applications. In combination with type A, it can also be mounted on the side (see application example).

see also	Seite
GN 148 Leveling Feet	QVX
GN 148.3 Vibration Damping Elements	QVX
Technical Information	
Overview of Types Vibration Damping Elements / Buffers / Rubber Buffers	QVX
Guide to Selecting Vibration Damping Elements	QVX
Plastic Characteristics	OVX

How to order	1	d ₁
	2	d_2
	3	Туре
1 2 3 4 5 CN 440 4 5C MO D 40 ST		Hardness
GN 148.4-56-M8-B-40-ST	5	Material

Terms

F₁ = Static compressive load

F₂ = Static tensile load

F₃ = Static compressive load

s₁ = Compression (spring travel) under load F₁

 s_2 = Elongation (spring travel) under load F_2

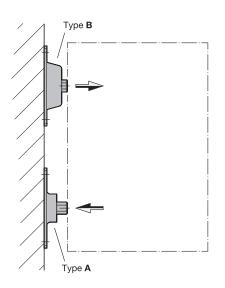
s₃ = Compression (spring travel) under load F₃

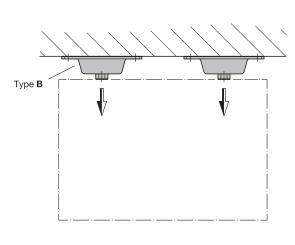
The spring rate R is the load which causes the damping element to be compressed / elongated by 1 mm.

Formula for calculating spring rate: $R = \frac{F}{s}$

The values listed in the table can be used to determine the degree of isolation as a function of the interference frequency, in accordance with the approach shown on page XYZ.

The information on load capacity is non-binding guidelines and excludes any liability. They generally do not constitute a guarantee of quality. Whether a product is suitable for a particular application must be determined in each individual case by the user.


Type A


d ₁	Hardness in Shore	Max. static load F ₁ in N	Spring rate R ₁ in N/mm	Max. compression s ₁ in mm
40	40	654	327	2
40	60	990	495	2
40	70	1543	771,5	2

Type B

d ₁	Hardness in Shore	Max. static load F ₂ in N	Spring rate R ₂ in N/mm	Max. elongation s ₂ in mm	Max. static load F ₃ in N	Spring rate R ₃ in N/mm	Max. compression s ₃ in mm
56	40	863	431,5	2	88	17,6	5
56	60	1000	500	2	151	30,2	5
56	70	1806	903	2	201	40,2	5

Application Example

