

 $I_1 \approx 2 \text{ to } 3 \text{ x thread pitch}$ $I_2 \approx 1.5 \text{ x d}$

d	I ₁	I ₂ ≈	M _{IN} in Nm Max. insertion torque	M _{LB} in Nm Min. breakaway torque	M _{OUT} in Nm Max. loosening torque
M 5	1,5 2,5	7,5	0,5	1	6,5
M 6	2 3	9	0,8	1,8	10
M 8	2,5 4	12	1,5	4	26
M 10	3 4,5	15	3	10	55
M 12	3,5 5	18	5	16	95
M 16	4 6	24	11	35	250
M 20	5 7,5	30	14	45	500

The torque value comply with DIN 267 Part 27. They are based on a test of a thread without preload with a nut thread of 6H at room temperature. For thread lengths $I_0 < I_2$, I_2 is reduced in such a way that one to two thread turns are not coated at the end of the thread.

Description

The principle of micro encapsulation MVK (gluing) consists of a liquid plastic material and hardener encapsulated in a thin polymer film which is embedded in a lacquer like carrier deposited in patch form an a thread. This patch dries and the component can be stored and handled in a normal manner.

When fitting a bolt with this patch the two capsules will burst under the pressure and friction between the two threads. The liquid plastic material and hardener will mix leading to a chemical reaction which will harden the glue, thus giving the required thread locking.

The setting of the mixture will start after 10-15 minutes. Sufficient hardness is achieved after about 30 minutes but complete setting is reached after 24 hours.

Adjustment and setting process must be completed within about 5 minutes.

The thread locking can be cracked by applying the M_{OUT} torque on the thread or alternatively by heating the component over +170 °C. It is not recommended to re-use the thread.

Threads, free from oil and grease give increased strength of locking action.

Components treated with this process can be stored for up to 4 years.

Features

- Thread locking to the highest order to prevent the self loosening and component loss even under vibration. Not suitable for adjustable bolts or screws.
- This security aspect may be essential for certain applications of standard parts. Stockholding of liquid glue is eliminated.
- Low insertion torque
- Temperature resistant from -40 °C up to 170 °C
- Excellent chemical stability

